Skip to main content

Fungal Endophytes as an Alternative Natural Resource for the Discovery of Bioactive Compounds of Pharmacological Importance

  • Chapter
  • First Online:
Endophytic Fungi

Abstract

Fungal endophytes are microorganisms that live in symbiotic relationships with the host plant for at least a part of their life cycle. One or more fungal endophytes are present in every plant across the globe. Fungal endophytes have emerged as a potential natural reservoir for bioactive secondary metabolites to meet the never-ending need for effective treatments. Secondary metabolites are divided into a number of classes, including alkaloids, benzopyranones, chinones, flavonoids, phenolic acids, quinones, steroids, saponins, tannins, terpenoids, tetralones, xanthones, etc. Endophytic fungi such as Alternaria sp., Aspergillus sp., Bipolaris sp., Cephalosporium sp., Chaetomium sp., Colletotrichum sp., Emericella sp., Fusarium sp., Guignardia sp., Hormonema sp., Metarhizium sp., Mucor sp., Paecilomyces sp., Penicillium sp., Phomopsis sp., Talaromyces sp., Taxomyces sp., Tolypocladium sp., Xylaria sp., etc. have been reported to possess potential bioactive compounds. Thus, they are potential sources of several natural drugs available in the market for antibacterial, antifungal, antiviral, antioxidant, anti-inflammatory, anticancer, and antidiabetic agents. This chapter summarizes about various fungal endophytes, their association with plants, and the pharmaceutical application of their secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou El-Kassem L, Hawas UW, El-Souda S, Ahmed EF, El-Khateeb W, Fayad W (2019) Anti-HCV protease potential of endophytic fungi and cytotoxic activity. Biocatal Agric Biotechnol 19:101170

    Article  Google Scholar 

  • Agrawal S, Samanta S, Deshmukh SK (2022) The antidiabetic potential of endophytic fungi: future prospects as therapeutic agents. Biotechnol Appl Biochem 69(3):1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Atmosukarto I, Castillo U, Hess WM, Sears J, Strobel G (2005) Isolation and characterization of Muscodor albus I-41.3 s, a volatile antibiotic producing fungus. Plant Sci 169(5):854–861

    Article  CAS  Google Scholar 

  • Abdalla MA, Aro AO, Gado D, Passari AK, Mishra VK, Singh BP, McGaw LJ (2020) Isolation of endophytic fungi from South African plants, and screening for their antimicrobial and extracellular enzymatic activities and presence of type I polyketide synthases. S Afr J Bot 134:336–342. https://doi.org/10.1016/j.sajb.2020.03.021

    Article  CAS  Google Scholar 

  • Bacon CW, Nelson PE (1994) Fumonisin production in corn by toxigenic strains of Fusarium moniliforme and Fusarium proliferatum. J Food Prot 57(6):514–521

    Article  CAS  PubMed  Google Scholar 

  • Bashyal BP, Wellensiek BP, Ramakrishnan R, Faeth SH, Ahmad N, Gunatilaka AL (2014) Altertoxins with potent anti-HIV activity from Alternaria tenuissima QUE1Se, a fungal endophyte of Quercus emoryi. Bioorg Med Chem 22(21):6112–6116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beattie KD, Ellwood N, Kumar R, Yang X, Healy PC, Choomuenwai V, Quinn RJ, Elliott AG, Huang JX, Chitty JL, Fraser JA (2016) Antibacterial and antifungal screening of natural products sourced from Australian fungi and characterisation of pestalactams D-F. Phytochemistry 124:79–85

    Article  CAS  PubMed  Google Scholar 

  • Boongphong S, Isaka M, Pittayakhajonwut D, Tanticharoen M, Thebtaranonth Y (2001) Multiplolides A and B, new antifungal 10- membered lactones from Xylaria multiplex. J Nat Prod 64(7):965–967

    Article  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Shi Y, Wu S, Wu X, Wang K, Sun H, He S, Dickschat JS, Wu B (2020) Polycyclic meroterpenoids, talaromyolides E− K for antiviral activity against pseudorabies virus from the endophytic fungus Talaromyces purpureogenus. Tetrahedron 76(30):131349

    Article  CAS  Google Scholar 

  • Chigozie V, Okezie M, Ajaegbu E, Okoye F, Esimone C (2020) Isolation, identification, and evaluation of biological activities of Daldinia eschscholtzii, an endophytic fungus isolated from the leaves of Musa paradisiaca. GSC Biological and Pharmaceutical Sciences 12(1):216–228

    Google Scholar 

  • Costa JH, Wassano CI, Angolini CFF, Scherlach K, Hertweck C, Pacheco Fill T (2019) Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. Sci Rep 9(1):1–11

    Article  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anticancer agents. J Ethnopharmacol 100(1–2):72–79

    Article  CAS  PubMed  Google Scholar 

  • Cuconati A, Molla A, Wimmer E (1998) Brefeldin A inhibits cell-free, de novo synthesis of poliovirus. J Virol 72(8):6456–6464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83(5):913–920

    Article  CAS  PubMed  Google Scholar 

  • Das T, Dey A, Pandey DK, Panwar JS, Nandy S (2022) Fungal endophytes as biostimulants of secondary metabolism in plants: a sustainable agricultural practice for medicinal crops. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 283–314

    Chapter  Google Scholar 

  • Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715

    Article  PubMed  PubMed Central  Google Scholar 

  • Digra S, Nonzom S (2023) An insight into endophytic antimicrobial compounds: an updated analysis. Plant Biotechnology Reports 14:1–31

    Google Scholar 

  • Durga B, Julius A, Raghavendra JS (2020) Review of pharmacological aspects of Nothapodytes nimmoniana species. Eur J Mol Clinic Med 7(03):1727–1732

    Google Scholar 

  • El-Hawary SS, Mohammed R, Bahr HS, Attia EZ, El-Katatny MMH, Abelyan N, Al-Sanea MM, Moawad AS, Abdelmohsen UR (2021) Soybean-associated endophytic fungi as potential source for anti-COVID-19 metabolites supported by docking analysis. J Appl Microbiol 131(3):1193–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng LX, Zhang BY, Zhu HJ, Pan L, Cao F (2020) Bioactive metabolites from Talaromyces purpureogenus, an endophytic fungus from Panax notoginseng. Chem Nat Compd 56:974–976

    Article  CAS  Google Scholar 

  • Ferreira MC, Vieira MDLA, Zani CL, de Almeida Alves TM, Junior PAS, Murta SM, Romanha AJ, Gil LHVG, de Oliveira Carvalho AG, Zilli JE, Vital MJS (2015) Molecular phylogeny, diversity, symbiosis and discover of bioactive compounds of endophytic fungi associated with the medicinal Amazonian plant Carapa guianensis Aublet (Meliaceae). Biochem Syst Ecol 59:36–44

    Article  CAS  Google Scholar 

  • Giacomazzi J, Baethgen L, Carneiro LC, Millington MA, Denning DW, Colombo AL, In Pasqualotto AC, Association with the LIFE Program (2016) The burden of serious human fungal infections in Brazil. Mycoses 59(3):145–150

    Article  PubMed  Google Scholar 

  • Goswami S, Vidyarthi AS, Bhunia B, Mandal T (2013) A review on lovastatin and its production. J Biochem Technol 4(1):581–587

    Google Scholar 

  • Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Govindappa M, Thanuja V, Tejashree S, Soukhya CA, Barge S, Manojkumar A, Ravishankar Rai V (2019) In vitro and in silico antioxidant, antidiabetic, anti-hiv and antialzheimer activity of endophytic fungi, Cladosporium uredinicola phytochemicals. Int J Pharmacol Phytochem Ethnomed 13:13–34

    CAS  Google Scholar 

  • Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J (2020) A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 39:107462

    Article  CAS  PubMed  Google Scholar 

  • Habbu PV, Madagundi SD, Kulkarni VH (2021) Antioxidant and antidiabetic potential of endophytic fungal fractions recovered from Tinospora cordifolia (Willd.) leaves. RGUHS. J Pharm Sci 11(2)

    Google Scholar 

  • Haque MA, Hossain MS, Rahman MZ, Rahman MR, Hossain MS, Mosihuzzaman M, Nahar N, Khan SI (2005) Isolation of bioactive secondary metabolites from the endophytic fungus of Ocimum basilicum. J Pharm Sci 4(2):127–130

    Google Scholar 

  • Hastuti US, Sulisetijono S, Thoyibah C, Pratiwi SH, Khotimah K (2022, May) Histological observation, identification, and secondary metabolites content in Endophytic fungi of mahogany tree (Swietenia mahagoni Jacq). In: 7th international conference on biological science (ICBS 2021). Atlantis Press, pp 156–164

    Google Scholar 

  • He J, Li ZH, Ai HL, Feng T, Liu JK (2019) Antibacterial chromones from cultures of the endophytic fungus Bipolaris eleusines. Nat Prod Res 33(24):3515–3520

    Article  CAS  PubMed  Google Scholar 

  • Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61(1):14–30

    Article  CAS  Google Scholar 

  • Huang X, Zhou D, Liang Y, Liu X, Cao F, Qin Y, Mo T, Xu Z, Li J, Yang R (2021) Cytochalasins from endophytic Diaporthe sp. GDG-118. Nat Prod Res 35(20):3396–3403

    Article  CAS  PubMed  Google Scholar 

  • Hussain H, Nazir M, Saleem M, Al-Harrasi A, Elizbit and Green, I.R. (2021) Fruitful decade of fungal metabolites as antidiabetic agents from 2010 to 2019: emphasis on α-glucosidase inhibitors. Phytochem Rev 20:145–179

    Article  CAS  Google Scholar 

  • Ibrahim M, Oyebanji E, Fowora M, Aiyeolemi A, Orabuchi C, Akinnawo B, Adekunle AA (2021) Extracts of endophytic fungi from leaves of selected Nigerian ethnomedicinal plants exhibited antioxidant activity. BMC Complement Med Ther 21(1):1–13

    Article  Google Scholar 

  • Jakubczyk D, Dussart F (2020) Selected fungal natural products with antimicrobial properties. Molecules 25(4):911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayant KK, Vijayakumar BS (2021) In-vitro antioxidant and antidiabetic potential of endophytic fungi associated with Ficus religiosa. Ital J Mycol 50:10–20

    Google Scholar 

  • Joseph B, Priya RM (2011) Bioactive compounds from endophytes and their potential in. Am J Biochem Mol Biol 1(3):291–309

    Article  Google Scholar 

  • Khan MIH, Sohrab MH, Rony SR, Tareq FS, Hasan CM, Mazid MA (2016) Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp. Toxicol Rep 3:861–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7):1208–1228

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Chandra P, Choudhary M (2017) Endophytic fungi: a potential source of bioactive compounds. Chem Sci Rev Lett 6:2373–2381

    CAS  Google Scholar 

  • Lacerda ÍCDS, Polonio JC, Golias HC (2022) Endophytic fungi as a source of antiviral compounds–a review. Chem Biodivers 19(6):e202100971

    Article  PubMed  Google Scholar 

  • Li E, Tian R, Liu S, Chen X, Guo L, Che Y (2008) Pestalotheols A− D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae. J Nat Prod 71(4):664–668

    Article  CAS  PubMed  Google Scholar 

  • Li F, Jiang T, Li Q, Ling X (2017) Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am J Cancer Res 7(12):2350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wei W, Wang RL, Liu F, Wang YK, Li R et al (2019) Colletolides A and B, two new γ-butyrolactone derivatives from the endophytic fungus Colletotrichum gloeosporioides. Phytochem Lett 33:90–93

    Article  CAS  Google Scholar 

  • Liu P, Zhang D, Shi R, Yang Z, Zhao F, Tian Y (2019a) Antimicrobial potential of endophytic fungi from Astragalus chinensis. 3 Biotech 9:1–9

    Article  Google Scholar 

  • Liu SS, Jiang JX, Huang R, Wang YT, Jiang BG, Zheng KX, Wu SH (2019b) A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma sp. Phytochem Lett 29:75–78

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92(12)

    Google Scholar 

  • Liu P, Zhang D, Shi R, Yang Z, Zhao F, Tian Y. Antimicrobial potential of endophytic fungi from Astragalus chinensis. 3 Biotech. 2019 Nov;9:1-9.

    Google Scholar 

  • Ma YM, Ma CC, Li T, Wang J (2016) A new furan derivative from an endophytic Aspergillus flavus of Cephalotaxus fortunei. Nat Prod Res 30(1):79–84

    Google Scholar 

  • Macías-Rubalcava ML, Sánchez-Fernández RE (2017) Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol 33:1–22

    Article  Google Scholar 

  • Manganyi MC, Ateba CN (2020) Untapped potentials of endophytic fungi: a review of novel bioactive compounds with biological applications. Microorganisms 8(12):1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina G, Pimentel MR, Bertucci TC, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 2012;27

    Google Scholar 

  • Mostert L, Crous PW, Petrini O (2000) Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia 52(1):46–58

    Google Scholar 

  • Nasmetova S, Gulyamova T, Ruzieva D, Mukhammedov I, Abdulmyanova L (2020) Isolation of α-amylase inhibitors from methanol fraction of the endophytic fungus penicillium brevicaule alba thom. Eur J Mol Clin Med 7(2):2174–2181

    Google Scholar 

  • Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59

    Article  CAS  PubMed  Google Scholar 

  • Nithya K, Muthumary J (2010) Secondary metabolite from Phomopsis sp. isolated from Plumeria acutifolia Poiret. Recent Res Sci Technol 2(4)

    Google Scholar 

  • Nzimande B, Kumalo HM, Ndlovu SI, Mkhwanazi NP (2022) Secondary metabolites produced by endophytic fungi, Alternaria alternata, as potential inhibitors of the human immunodeficiency virus. Front Genet 13

    Google Scholar 

  • Ojima I, Lichtenthal B, Lee S, Wang C, Wang X (2016) Taxane anticancer agents: a patent perspective. Expert Opin Ther Pat 26(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Olatunji OJ, Tang J, Tola A, Auberon F, Oluwaniyi O, Ouyang Z (2018) The genus Cordyceps: An extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia 129:293–316

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Zheng W, Yang S (2020) Chemical and activity investigation on metabolites produced by an endophytic fungi Psathyrella candolleana from the seed of Ginkgo biloba. Nat Prod Res 34(21):3130–3133

    Article  CAS  PubMed  Google Scholar 

  • Panda SK, Sahoo G, Swain SS, Luyten W (2022) Anticancer activities of mushrooms: a neglected source for drug discovery. Pharmaceuticals 15(2):176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey PK, Singh S, Yadav RNS, Singh AK, Singh MCK (2014) Fungal endophytes: promising tools for pharmaceutical science. Int J Pharm Sci Rev Res 25(2):128–138

    Google Scholar 

  • Pandey PR, Okuda H, Watabe M, Pai SK, Liu W, Kobayashi A, Xing F, Fukuda K, Hirota S, Sugai T, Wakabayashi G (2011) Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat 130:387–398

    Article  CAS  PubMed  Google Scholar 

  • Peláez F, Cabello A, Platas G, Díez MT, del Val AG, Basilio A, Martán I, Vicente F, Bills GF, Giacobbe RA, Schwartz RE (2000) The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Syst Appl Microbiol 23(3):333–343

    Article  PubMed  Google Scholar 

  • Pongcharoen W, Rukachaisirikul S, Phongpaichit S, Kuhn T, Pelzing M, Sakayaroj J, Taylor WC (2008) Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry 69(9):1900–1902

    Article  CAS  PubMed  Google Scholar 

  • Popli D, Anil V, Subramanyam AB, MN N, VR R, Rao SN, Rai RV, Govindappa M (2018) Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artificial cells, nanomedicine, and biotechnology, 46(sup1): 676–683

    Google Scholar 

  • Puri SK, Habbu PV, Kulkarni PV, Kulkarni VH (2018) Nitrogen containing secondary metabolites from endophytes of medicinal plants and their biological/pharmacological activities-a review. Syst Rev Pharm 9(1):22–30

    Article  CAS  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Negi C, Yadav AN, Yadav N, Singh K, Saxena AK (2020) Endophytic fungi from medicinal plants: biodiversity and biotechnological applications. In: Microbial endophytes. Woodhead, pp 273–305

    Chapter  Google Scholar 

  • Ravindran C, Naveenan T, Varatharajan GR, Rajasabapathy R, Meena RM (2012) Antioxidants in mangrove plants and endophytic fungal associations. Bot Mar 55(3):269–279

    Article  CAS  Google Scholar 

  • Rehberg N, Akone HS, Ioerger TR, Erlenkamp G, Daletos G, Gohlke H, Proksch P, Kalscheuer R (2018) Chlorflavonin targets acetohydroxyacid synthase catalytic subunit IlvB1 for synergistic killing of Mycobacterium tuberculosis. ACS Infect Dis 4(2):123–134

    Article  CAS  PubMed  Google Scholar 

  • Rehman S, Shawl AS, Kour A, Andrabi R, Sudan P, Sultan P, Verma V, Qazi GN (2008) An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol 44:203–209

    Article  CAS  Google Scholar 

  • Reshma J, Vinaya C, Linu M (2019) Agricultural applications of endophytic microflora. Biol Biotechnol, Seed Endophytes, pp 385–403

    Google Scholar 

  • Ruzieva D, Gulyamova T, Nasmetova S, Mukhammedov I, Rasulova G, Ruziyeva DM (2021) Identification of bioactive compounds of the endophytic fungus Aspergillus egypticus-HT166S inhibiting the activity of pancreatic α-amylase Pankreatik a-amilaz aktivitesini inhibe eden endofitik mantar Aspergillus egypticus-HT166S′nin biyoaktif bileşiklerinin

    Google Scholar 

  • Sadananda TS, Nirupama R, Chaithra K, Govindappa M, Chandrappa CP, Vinay Raghavendra B (2011) Antimicrobial and antioxidant activities of endophytes from Tabebuia argentea and identification of anticancer agent (lapachol). J Med Plants Res 5(16):3643–3652

    CAS  Google Scholar 

  • Sadrati N, Daoud H, Zerroug A, Dahamna S, Bouharati S (2013) Screening of antimicrobial and antioxidant secondary metabolites from endophytic fungi isolated from wheat (Triticum durum). J Plant Protect Res 53(2)

    Google Scholar 

  • Saxena S, Chhibber M, Singh IP (2019) Fungal bioactive compounds in pharmaceutical research and development. Curr Bioact Compd 15(2):211–231

    Article  CAS  Google Scholar 

  • Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci 77(3):1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulza B, Boyle C (2005) The endophyte continuum. Mycol Res 109(6):661–686

    Article  Google Scholar 

  • Selim KA, Elkhateeb WA, Tawila AM, El-Beih AA, Abdel-Rahman TM, El-Diwany AI, Ahmed EF (2018) Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation 4(3):49

    Article  CAS  Google Scholar 

  • Sharaf MH, Abdelaziz AM, Kalaba MH, Radwan AA, Hashem AH (2022) Antimicrobial, antioxidant, cytotoxic activities and phytochemical analysis of fungal endophytes isolated from Ocimum basilicum. Appl Biochem Biotechnol:1–19

    Google Scholar 

  • Shi S, Li Y, Ming Y, Li C, Li Z, Chen J, Luo M (2018) Biological activity and chemical composition of the endophytic fungus Fusarium sp. TP-G1 obtained from the root of Dendrobium officinale Kimura Migo. Rec Nat Prod 12:549–556

    Article  CAS  Google Scholar 

  • Singh B, Kaur A (2016) Antidiabetic potential of a peptide isolated from an endophytic Aspergillus awamori. J Appl Microbiol 120(2):301–311

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 7:1–14

    Article  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260(5105):214–216

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Morrison SI, Cassella M (2003). Methods for protection of plants from Oomyocyte pathogens by use of Serratia marcescens and isolates. US Patent Appl US2003/0049230 A1

    Google Scholar 

  • Subban K, Subramani R, Johnpaul M (2013) A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat Prod Res 27(16):1445–1449

    Article  CAS  PubMed  Google Scholar 

  • Tobert JA (2003) Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2(7):517–526

    Article  CAS  PubMed  Google Scholar 

  • Toghueo RMK (2020) Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology 11(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Toghueo RMK, Boyom FF (2019) Endophytes from ethno-pharmacological plants: sources of novel antioxidants-A systematic review. Biocatal Agric Biotechnol 22:101430

    Article  Google Scholar 

  • Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Praveen V, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CH, Chowdappa S, Alqarawi AA, Abd Allah E.F. (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9:328484. https://doi.org/10.3389/fphar.2018.00309

    Article  CAS  Google Scholar 

  • Uzor PF, Osadebe PO, Nwodo NJ (2017) Antidiabetic activity of extract and compounds from an endophytic fungus Nigrospora oryzae. Drug Res 67(05):308–311

    Article  CAS  Google Scholar 

  • Wang J, Huang Y, Fang M, Zhang Y, Zheng Z, Zhao Y, Su W (2002) Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunol Med Microbiol 34(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965

    Article  CAS  PubMed  Google Scholar 

  • Wheeler NC, Jech K, Masters S, Brobst SW, Alvarado AB, Hoover AJ, Snader KM (1992) Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. J Nat Prod 55(4):432–440

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Kim S, Bang S, Lee HJ, Liu C, Park CI, Shim SH (2015) Barceloneic acid C, a new polyketide from an endophytic fungus Phoma sp. JS752 and its antibacterial activities. J Antibiot 68(2):139–141

    Article  CAS  Google Scholar 

  • Yadav M, Yadav A, Yadav JP (2014) In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac J Trop Med 7:S256–S261

    Article  Google Scholar 

  • Yang X, Feng P, Yin Y, Bushley K, Spatafora JW, Wang C (2018) Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment. MBio 9(5):e01211–e01218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Zhao Q, Sun FM, An T (2009) Gentiopicrin-producing endophytic fungus isolated from Gentiana macrophylla. Phytomedicine 16(8):793–797

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Sun S, Zhu T, Lin Z, Gu J, Li D, Gu Q (2011) Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry 72(11–12):1436–1442

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Zheng BQ, Lao JP, Mao LJ, Chen SY, Kubicek CP, Lin FC (2008) Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei. Appl Microbiol Biotechnol 78:833–840

    Google Scholar 

  • Zheng CJ, Shao CL, Guo ZY, Chen JF, Deng DS, Yang KL, Chen YY, Fu XM, She ZG, Lin YC, Wang CY (2012) Bioactive hydroanthraquinones and anthraquinone dimers from a soft coral-derived Alternaria sp. fungus. J Nat Prod 75(2):189–197

    Google Scholar 

  • Zhao S, Wang B, Tian K, Ji W, Zhang T, Ping C, Yan W, Ye Y (2021) Novel metabolites from the Cercis chinensis derived endophytic fungus Alternaria alternata ZHJG5 and their antibacterial activities. Pest Manag Sci 77(5):2264–2271

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Xu LL, Zhang Y, Lin ZH, Xia T, Yang DF, Chen YM, Yang XL (2019) Three new α-pyrone derivatives from the plant endophytic fungus Penicillium ochrochloronthe and their antibacterial, antifungal, and cytotoxic activities. J Asian Nat Prod Res 21(9):851–858

    Article  CAS  PubMed  Google Scholar 

  • Zheng N, Yao F, Liang X, Liu Q, Xu W, Liang Y, Liu X, Li J, Yang R (2018) A new phthalide from the endophytic fungus Xylaria sp. GDG-102. Nat Prod Res 32(7):755–760

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Zhang X, Shah M, Che Q, Zhang G, Gu Q, Zhu T, Li D (2021) Polyhydroxy p-terphenyls from a mangrove endophytic fungus Aspergillus candidus LDJ-5. Mar Drugs 19(2):82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Diao X, Wang T, Chen G, Lin Q, Yang X, Xu J (2018) Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PLoS One 13(6):e0197359

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratul Saikia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boruah, J.L.H. et al. (2024). Fungal Endophytes as an Alternative Natural Resource for the Discovery of Bioactive Compounds of Pharmacological Importance. In: Singh, B.P., Abdel-Azeem, A.M., Gautam, V., Singh, G., Singh, S.K. (eds) Endophytic Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-49112-2_3

Download citation

Publish with us

Policies and ethics