Skip to main content

Application of Stem Cells in Dentistry: A Review Article

  • Conference paper
  • First Online:
MEDICON’23 and CMBEBIH’23 (MEDICON 2023, CMBEBIH 2023)

Abstract

It is necessary to properly understand all biological processes behind the growth and development of the tissue if we want the tissue regeneration procedure to become part of daily practice. Tissue engineering is an interdisciplinary area that aims to discover new approaches to treating various medical conditions, and dentistry is no exception. In the last couple of years, studies on stem cells and tissue engineering have reported some new findings in dentistry that can give us hope in developing new guidelines and improving the old ones. There is excellent attention in researching this topic because most professionals, clinical practitioners, and researchers will agree that the best replacement for the lost tissue is not some material or artificial replacement but the biological tissue itself. It becomes essential with the fact that the average expected lifetime in this century will extend, which will make preserving teeth and oral structures even more meaningful. The broader application of procedures based on stem cells in dentistry could change daily practice and techniques that clinicians use in treating patients. Almost every branch of dentistry could benefit from these new findings. However, some obstacles should be resolved before stem cell therapy becomes part of daily dental practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbass, M.M.S., et al.: Hydrogels and dentin-pulp complex regeneration: from the benchtop to clinical translation. Polymers 12(12), 2935 (2020). https://doi.org/10.3390/polym12122935

    Article  Google Scholar 

  2. Abuarqoub, D., Aslam, N., Almajali, B., Shajrawi, L., Jafar, H., Awidi, A.: Neuro-regenerative potential of dental stem cells: a concise review. Cell Tissue Res. 382(2), 267–279 (2020). https://doi.org/10.1007/s00441-020-03255-0

    Article  Google Scholar 

  3. Ahmed, G.M., et al.: Cell-based transplantation versus cell homing approaches for pulp-dentin complex regeneration. Stem Cells Int. 2021, 8483668 (2021). https://doi.org/10.1155/2021/8483668

    Article  Google Scholar 

  4. Al-Moraissi, E.A., Oginni, F.O., Mahyoub Holkom, M.A., Mohamed, A.A.S., Al-Sharani, H.M.: Tissue-engineered bone using mesenchymal stem cells versus conventional bone grafts in the regeneration of maxillary alveolar bone: A systematic review and meta-analysis. Int. J. Oral Maxillofacial Implants 35(1), 79–90. https://doi.org/10.11607/jomi.7682(2020)

  5. Anitua, E., Troya, M., Zalduendo, M.: Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 20(4), 479–498 (2018). https://doi.org/10.1016/j.jcyt.2017.12.011

    Article  Google Scholar 

  6. Annamalai, R.T., Hong, X., Schott, N.G., Tiruchinapally, G., Levi, B., Stegemann, J.P.: Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects. Biomaterials 208, 32–44 (2019). https://doi.org/10.1016/j.biomaterials.2019.04.001

    Article  Google Scholar 

  7. Bakhtiar, H., Mazidi S.A., Mohammadi Asl, S., Ellini, M.R., Moshiri, A., Nekoofar, M.H., Dummer, P.M.H.: The role of stem cell therapy in regeneration of dentinepulp complex: a systematic review. Progress Biomaterials 7(4), 249–268 (2018).https://doi.org/10.1007/s40204-018-0100-7

  8. Bhatt, A., Le, A.D.: Craniofacial tissue regeneration: where are we? J. Calif. Dent. Assoc. 37(11), 799–803 (2009). https://doi.org/10.1080/19424396.2009.12223034

    Article  Google Scholar 

  9. Bisht, B., Hope, A., Mukherjee, A., Paul, M.K.: Advances in the fabrication of scaffold and 3D printing of biomimetic bone graft. Ann. Biomed. Eng. 49(4), 1128–1150 (2021). https://doi.org/10.1007/s10439-021-02752-9

    Article  Google Scholar 

  10. Bobrie, A., Colombo, M., Raposo, G., Théry, C.: Exosome secretion: molecular mechanisms and roles in immune responses. Traffic (Copenhagen, Denmark) 12(12), 1659–1668 (2011). https://doi.org/10.1111/j.1600-0854.2011.01225.x

    Article  Google Scholar 

  11. Caballero Aguilar, L.M., Silva, S.M., Moulton, S.E.: Growth factor delivery: Defining the next generation platforms for tissue engineering. Journal of controlled release: official journal of the Controlled Release Society 306, 40–58 (2019). https://doi.org/10.1016/j.jconrel.2019.05.028

    Article  Google Scholar 

  12. Cai, J., Cho, S.W., Kim, J.Y., Lee, M.J., Cha, Y.G., Jung, H.S.: Patterning the size and number of tooth and its cusps. Dev. Biol. 304(2), 499–507 (2007). https://doi.org/10.1016/j.ydbio.2007.01.002

    Article  Google Scholar 

  13. Calamari, Z.T., Hu, J.K., Klein, O.D.: Tissue mechanical forces and evolutionary developmental changes act through space and time to shape tooth morphology and function. BioEssays: news and reviews in molecular, cellular and developmental biology 40(12), e1800140 (2018). https://doi.org/10.1002/bies.201800140

    Article  Google Scholar 

  14. Calamita, M., Coachman, C., Sesma, N., Kois, J.: Occlusal vertical dimension: treatment planning decisions and management considerations. Int. J. Esthetic Dentistry 14(2), 166–181 (2019)

    Google Scholar 

  15. Carlsson, L., Röstlund, T., Albrektsson, B., Albrektsson, T., Brånemark, P.I.: Osseointegration of titanium implants. Acta Orthop. Scand. 57(4), 285–289 (1986). https://doi.org/10.3109/17453678608994393

    Article  Google Scholar 

  16. Casagrande, L., Cordeiro, M.M., Nör, S.A., Nör, J.E.: Dental pulp stem cells in regenerative dentistry. Odontology 99(1), 1–7 (2011). https://doi.org/10.1007/s10266-010-0154-z

    Article  Google Scholar 

  17. Catón, J., Bostanci, N., Remboutsika, E., De Bari, C., Mitsiadis, T.A.: Future dentistry: cell therapy meets tooth and periodontal repair and regeneration. J. Cellular Molecular Med. 15(5), 1054–1065 (2011). https://doi.org/10.1111/j.1582-4934.2010.01251.x

    Article  Google Scholar 

  18. Chen, H., et al.: Acellular synthesis of a human enamel-like microstructure. Adv. Mater. 18(14), 1846–1851 (2006). https://doi.org/10.1002/adma.200502401

    Article  Google Scholar 

  19. Chen, S., Xie, H., Zhao, S., Wang, S., Wei, X., Liu, S.: The genes involved in dentinogenesis. Organogenesis 18(1), 1–19 (2022). https://doi.org/10.1080/15476278.2021.2022373

    Article  Google Scholar 

  20. Chen, Y., Huang, H., Li, G., Yu, J., Fang, F., Qiu, W.: Dental-derived mesenchymal stem cell sheets: a prospective tissue engineering for regenerative medicine. Stem Cell Res. Therapy 13(1) (2022). https://doi.org/10.1186/s13287-022-02716-3

  21. Chew, J.R.J., et al.: Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 89, 252–264 (2019). https://doi.org/10.1016/j.actbio.2019.03.021

    Article  Google Scholar 

  22. D’Albis, G., D’Albis, V., Palma, M., Plantamura, M., Nizar, A.K.: Use of hyaluronic acid for regeneration of maxillofacial bones. Genesis (New York, N.Y. 2000) 60(8–9), e23497 (2022). https://doi.org/10.1002/dvg.23497

  23. DeRosa, T.A.: A retrospective evaluation of pulpotomy as an alternative to extraction. Gen. Dent. 54(1), 37–40 (2006)

    Google Scholar 

  24. Dong, R., Liu, Y., Yang, Y., Wang, H., Xu, Y., Zhang, Z.: MSC-derived exosomes-based therapy for peripheral nerve injury: a novel therapeutic strategy. Biomed. Res. Int. 2019, 6458237 (2019). https://doi.org/10.1155/2019/6458237

    Article  Google Scholar 

  25. Egido-Moreno, S., Valls-Roca-Umbert, J., Céspedes-Sánchez, J.M., López-López, J., Velasco-Ortega, E.: Clinical efficacy of mesenchymal stem cells in bone regeneration in oral implantology. Systematic review and meta-analysis. Int. J. Environ. Res. Public Health 18(3), 894 (2021). https://doi.org/10.3390/ijerph18030894

  26. Elani, H.W., Starr, J.R., Da Silva, J.D., Gallucci, G.O.: Trends in dental implant use in the U.S., 1999–2016, and projections to 2026. J. Dental Res. 97(13), 1424–1430 (2018). https://doi.org/10.1177/0022034518792567

  27. Giuliani, A., et al.: Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl. Med. 2(4), 316–324 (2013). https://doi.org/10.5966/sctm.2012-0136

    Article  Google Scholar 

  28. Gu, S., Ran, S., Qin, F., Cao, D., Wang, J., Liu, B., Liang, J.: Human dental pulp stem cells via the NF-κB pathway. Cellular physiology and biochemistry. Int. J. Exp. cellular Physiol. Biochem. Pharmacol. 36(5), 1725–1734 (2015).https://doi.org/10.1159/000430145

  29. Hu, B., et al.: Bone marrow cells can give rise to ameloblast-like cells. J. Dental Res. 85(5), 416–421 (2006). https://doi.org/10.1177/154405910608500504

    Article  Google Scholar 

  30. Jandt, K.D., Sigusch, B.W.: Future perspectives of resin-based dental materials. Dental materials: official publication of the academy of dental materials 25(8), 1001–1006 (2009). https://doi.org/10.1016/j.dental.2009.02.009

    Article  Google Scholar 

  31. Kim, S.G.: A cell-based approach to dental pulp regeneration using mesenchymal stem cells: a scoping review. Int. J. Mol. Sci. 22(9), 4357 (2021). https://doi.org/10.3390/ijms22094357

    Article  Google Scholar 

  32. Kitamura, M., et al.: FGF-2 stimulates periodontal regeneration: results of a multi-center randomized clinical trial. J. Dent. Res. 90(1), 35–40 (2011). https://doi.org/10.1177/0022034510384616

  33. Lehmann, N., et al.: Self-etching increases matrix metalloproteinase expression in the dentin-pulp complex. J. Dent. Res. 88(1), 77–82 (2009). https://doi.org/10.1177/0022034508327925

    Article  Google Scholar 

  34. Li, G., et al.: Adipose stem cells-derived exosomes modified gelatin sponge promotes bone regeneration. Front. Bioeng. Biotechnol. 11, 1096390 (2023). https://doi.org/10.3389/fbioe.2023.1096390

    Article  Google Scholar 

  35. Li, Q., Yang, G., Li, J., Ding, M., Zhou, N., Dong, H., Mou, Y.: Stem cell therapies for periodontal tissue regeneration: a network meta-analysis of preclinical studies. Stem Cell Res. Therapy 11(1), 427 (2020). https://doi.org/10.1186/s13287-020-01938-7

  36. Liu, Y., Zheng, Y., Ding, G., Fang, D., Zhang, C., Bartold, P.M., Gronthos, S., Shi, S., Wang, S.: Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem cells (Dayton, Ohio) 26(4), 1065–1073 (2008). https://doi.org/10.1634/stemcells.2007-0734

  37. Liu, J., et al.: Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells. Cells 8(6), 537 (2019). https://doi.org/10.3390/cells8060537

    Article  Google Scholar 

  38. Ma, G., Wu, C., Shao, M.: Simultaneous implant placement with autogenous onlay bone grafts: a systematic review and meta-analysis. Int. J. Implant Dent. 7(1), 61 (2021). https://doi.org/10.1186/s40729-021-00311-4.PMID:33928458;PMCID:PMC8085156

    Article  Google Scholar 

  39. Mao, J.J., et al.: Regenerative endodontics: barriers and strategies for clinical translation. Dent. Clin. North Am. 56(3), 639–649 (2012). https://doi.org/10.1016/j.cden.2012.05.005

    Article  Google Scholar 

  40. McGue, C.M., Mañón, V.A., Viet, C.T.: Advances in tissue engineering and implications for oral and maxillofacial reconstruction. J. Calif. Dent. Assoc. 49(11), 685–694 (2021)

    Google Scholar 

  41. McKenna, G.J., Gjengedal, H., Harkin, J., Holland, N., Moore, C., Srinivasan, M.: Effect of autogenous bone graft site on dental implant survival and donor site complications: a systematic review and meta-analysis. J. Evid. Based Dent. Pract. 22(3), 101731 (2022). https://doi.org/10.1016/j.jebdp.2022.101731

    Article  Google Scholar 

  42. Mehrali, M., Shirazi, F.S., Mehrali, M., Metselaar, H.S., Kadri, N.A., Osman, N.A.: Dental implants from functionally graded materials. J. Biomed. Mater. Res. Part A 101(10), 3046–3057 (2013). https://doi.org/10.1002/jbm.a.34588

    Article  Google Scholar 

  43. Miller, C.P., Chiodo, C.P.: Autologous bone graft in foot and ankle surgery. Foot Ankle Clin. 21(4), 825–837 (2016). https://doi.org/10.1016/j.fcl.2016.07.007

    Article  Google Scholar 

  44. Minervini, G., et al.: The association between COVID-19 related anxiety, stress, depression, temporomandibular disorders, and headaches from childhood to adulthood: a systematic review. Brain Sci. 13(3), 481 (2023). https://doi.org/10.3390/brainsci13030481

    Article  Google Scholar 

  45. Minervini, G., Del Mondo, D., Russo, D., Cervino, G., D’Amico, C., Fiorillo, L.: Stem cells in temporomandibular joint engineering: state of art and future persectives. J. Craniofac. Surg. 33(7), 2181–2187 (2022). https://doi.org/10.1097/SCS.0000000000008771

    Article  Google Scholar 

  46. Minervini, G., D’Amico, C., Cicciù, M., Fiorillo, L.: Temporomandibular joint disk displacement: etiology, diagnosis, imaging, and therapeutic approaches. J. Craniofacial Surgery (2022). https://doi.org/10.1097/SCS.0000000000009103. Advance online publication.https://doi.org/10.1097/SCS.0000000000009103

  47. Minervini, G., Cervino, G., Chaturvedi, S., Franco, R., di Francesco, F., Fiorillo, L., Cicciù, M.: Advanced method of rehabilitating edentulous Jaws: a review of telescopic denture. Technology and health care: official journal of the European Society for Engineering and Medicine, https://doi.org/10.3233/THC-220641. Advance online publication (2022).https://doi.org/10.3233/THC-220641

  48. Minervini, G., et al.: Gaucher: a systematic review on oral and radiological aspects. Medicina 59(4), 670 (2023). https://doi.org/10.3390/medicina59040670

    Article  Google Scholar 

  49. Minervini, G., et al.: Correlation between temporomandibular disorders (TMD) and posture evaluated trough the diagnostic criteria for temporomandibular disorders (DC/TMD): a systematic review with meta-analysis. J. Clinical Med. 12(7), 2652 (2023). https://doi.org/10.3390/jcm12072652

    Article  Google Scholar 

  50. Mitsiadis, T.A., Graf, D.: Cell fate determination during tooth development and regeneration. Birth defects research. Part C, Embryo today: reviews 87(3), 199–211 (2009). https://doi.org/10.1002/bdrc.20160

  51. Mitsiadis, T.A., Feki, A., Papaccio, G., Catón, J.: Dental pulp stem cells, niches, and notch signaling in tooth injury. Adv. Dent. Res. 23(3), 275–279 (2011). https://doi.org/10.1177/0022034511405386

    Article  Google Scholar 

  52. Mitsiadis, T.A., Orsini, G., Jimenez-Rojo, L.: Stem cell-based approaches in dentistry. European Cells Mater. 30, 248–257 (2015). https://doi.org/10.22203/ecm.v030a17

  53. Morsczeck, C., Reichert, T.E.: Dental stem cells in tooth regeneration and repair in the future. Expert opinion on biological therapy 18(2), 187–196 (2018). https://doi.org/10.1080/14712598.2018.1402004

  54. Mosaddad, S.A., Rasoolzade, B., Namanloo, R.A., Azarpira, N., Dortaj, H.: Stem cells and common biomaterials in dentistry: a review study. Journal of materials science. Materials in medicine 33(7), 55 (2022). https://doi.org/10.1007/s10856-022-06676-1

  55. Nakashima, M., et al.: Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res. Ther. 8(1), 61 (2017). https://doi.org/10.1186/s13287-017-0506-5

    Article  Google Scholar 

  56. Nie, E., et al.: Effectiveness of direct pulp capping bioactive materials in dentin regeneration: a systematic review. Materials (Basel, Switzerland) 14(22), 6811 (2021). https://doi.org/10.3390/ma14226811

    Article  Google Scholar 

  57. Opris, H., Baciut, M., Bran, S., Dinu, C., Armencea, G., Opris, D., Mitre, I., Manea, A., Stoia, S., Tamas, T., Barbur, I., Baciut, G.: Characterization of eggshell as a bio- regeneration material. Med. Pharmacy Reports 96(1), 93–100 (2023). https://doi.org/10.15386/mpr-2476

  58. Orsini, G., Pagella, P., Mitsiadis, T.A.: Modern trends in dental medicine: an update for internists. Am. J. Med. 131(12), 1425–1430 (2018). https://doi.org/10.1016/j.amjmed.2018.05.042

    Article  Google Scholar 

  59. Pegtel, D.M., Gould, S.J.: Exosomes. Annu. Rev. Biochem. 88, 487–514 (2019). https://doi.org/10.1146/annurev-biochem-013118-111902

    Article  Google Scholar 

  60. Piva, E., Silva, A.F., Nör, J.E.: Functionalized scaffolds to control dental pulp stem cell fate. J. Endodontics 40(4 Suppl), S33–S40 (2014). https://doi.org/10.1016/j.joen.2014.01.013

    Article  Google Scholar 

  61. Potdar, P.D., Jethmalani, Y.D.: Human dental pulp stem cells: applications in future regenerative medicine. World J. Stem Cells 7(5), 839–851 (2015). https://doi.org/10.4252/wjsc.v7.i5.839

    Article  Google Scholar 

  62. Qasim, S.S.B., Al-Otaibi, D., Al-Jasser, R., Gul, S.S., Zafar, M.S.: An evidence-based update on the molecular mechanisms underlying periodontal diseases. Int. J. Molecular Sci. 21(11), 3829 (2020). https://doi.org/10.3390/ijms21113829

  63. Qasim, S.S.B., Zafar, M.S., Niazi, F.H., Alshahwan, M., Omar, H., Daood, U.: Functionally graded biomimetic biomaterials in dentistry: an evidence-based update. J. Biomater. Sci. Polym. Ed. 31(9), 1144–1162 (2020). https://doi.org/10.1080/09205063.2020.1744289

    Article  Google Scholar 

  64. Renvoisé, E., et al.: Mechanical constraint from growing jaw facilitates mammalian dental diversity. Proc. Nat. Acad. Sci. United States of America 114(35), 9403–9408 (2017). https://doi.org/10.1073/pnas.1707410114

    Article  Google Scholar 

  65. Ricketts, D.: Management of the deep carious lesion and the vital pulp dentine complex. Br. Dent. J. 191(11), 606–610 (2001). https://doi.org/10.1038/sj.bdj.4801246a

    Article  Google Scholar 

  66. Seo, B.M., et al.: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet (London, England) 364(9429), 149–155 (2004). https://doi.org/10.1016/S0140-6736(04)16627-0

    Article  Google Scholar 

  67. Seo, B.M., et al.: SHED repair critical-size calvarial defects in mice. Oral Dis. 14(5), 428–434 (2008). https://doi.org/10.1111/j.1601-0825.2007.01396.x

    Article  Google Scholar 

  68. Sharpe P.T.: Dental mesenchymal stem cells. Development (Cambridge, England) 143(13), 2273–2280 (2016). https://doi.org/10.1242/dev.134189

  69. Shi, H., Zhou, P., Li, J., Liu, C., Wang, L.: Functional gradient metallic biomaterials: techniques, current scenery, and future prospects in the biomedical field. Front. Bioeng. Biotechnol. 8, 616845 (2021). https://doi.org/10.3389/fbioe.2020.616845

    Article  Google Scholar 

  70. Shin, H., Jo, S., Mikos, A.G.: Biomimetic materials for tissue engineering. Biomaterials 24(24), 4353–4364 (2003). https://doi.org/10.1016/s0142-9612(03)00339-9

    Article  Google Scholar 

  71. Siddiqui, Z., et al.: Cells and material-based strategies for regenerative endodontics. Bioactive Mater. 14, 234–249 (2021). https://doi.org/10.1016/j.bioactmat.2021.11.015

    Article  Google Scholar 

  72. Smart. Servier Medical Art. (2023). Retrieved May 7, 2023, from https://smart.servier.com/

  73. Soudi, A., Yazdanian, M., Ranjbar, R., Tebyanian, H., Yazdanian, A., Tahmasebi, E., Keshvad, A., Seifalian, A.: Role and application of stem cells in dental regeneration: a comprehensive overview. EXCLI J. 20, 454–489 (2021). https://doi.org/10.17179/excli2021-3335

  74. Sowmya, S., Mony, U., Jayachandran, P., Reshma, S., Kumar, R. ., Arzate, H., Nair, S.V., Jayakumar, R.: Tri-layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv. Healthcare Mater. 6(7) (2017). https://doi.org/10.1002/adhm.201601251. https://doi.org/10.1002/adhm.201601251

  75. Sui, B., Wu, D., Xiang, L., Fu, Y., Kou, X., Shi, S.: Dental pulp stem cells: from discovery to clinical application. J. Endodontics 46(9S), S46–S55 (2020). https://doi.org/10.1016/j.joen.2020.06.027

    Article  Google Scholar 

  76. Tassi, S.A., Sergio, N.Z., Misawa, M.Y.O., Villar, C.C.: Efficacy of stem cells on periodontal regeneration: systematic review of pre-clinical studies. J. Periodontal Res. 52(5), 793–812 (2017). https://doi.org/10.1111/jre.12455

    Article  Google Scholar 

  77. Temelci, A., Yılmaz, H.G., Ünsal, G., Uyanik, L.O., Yazman, D., Ayali, A., Minervini, G.: investigation of the wetting properties of thalassemia patients’ blood samples on grade 5 titanium implant surfaces: a pilot study. Biomimetics (Basel, Switzerland) 8(1), 25 (2023). https://doi.org/10.3390/biomimetics8010025

  78. Villar, C.C., Cochran, D.L.: Regeneration of periodontal tissues: guided tissue regeneration. Dent. Clin. North Am. 54(1), 73–92 (2010). https://doi.org/10.1016/j.cden.2009.08.011

    Article  Google Scholar 

  79. Vishwanath, V., Rao, H.M.: Gutta-percha in endodontics—a comprehensive review of material science. J. Conservative Dentistry JCD 22(3), 216–222 (2019). https://doi.org/10.4103/JCD.JCD_420_18

    Article  Google Scholar 

  80. Wang, J., Ma, H., Jin, X., Hu, J., Liu, X., Ni, L., Ma, P.X.: The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials 32(31), 7822–7830 (2011). https://doi.org/10.1016/j.biomaterials.2011.04.034

  81. Wang, X., Xia, C., Zhang, Z., Deng, X., Wei, S., Zheng, G., Chen, H.: Direct growth of human enamel-like calcium phosphate microstructures on human tooth. J. Nanoscience Nanotechnol. 9(2), 1361–1364 (2009). https://doi.org/10.1166/jnn2009.c157

  82. Wang, Y., Sun, Y.: Engineered organoids in oral and maxillofacial regeneration. iScience 26(1), 105757 (2022). https://doi.org/10.1016/j.isci.2022.105757

  83. Windisch, P., et al.: A phase IIa randomized controlled pilot study evaluating the safety and clinical outcomes following the use of rhGDF-5/β-TCP in regenerative periodontal therapy. Clin. Oral Invest. 16(4), 1181–1189 (2012). https://doi.org/10.1007/s00784-011-0610-3

    Article  Google Scholar 

  84. Yang, X., Ma, Y., Guo, W., Yang, B., Tian, W.: Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics 9(9), 2694–2711 (2019). https://doi.org/10.7150/thno.31801

    Article  Google Scholar 

  85. Yin, I.X., Zhang, J., Zhao, I.S., Mei, M.L., Li, Q., Chu, C.H.: The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 15, 2555–2562 (2020). https://doi.org/10.2147/IJN.S246764

    Article  Google Scholar 

  86. Yu, M., Wong, S.W., Han, D., Cai, T.: Genetic analysis: Wnt and other pathways in nonsyndromic tooth agenesis. Oral Dis. 25(3), 646–651 (2019). https://doi.org/10.1111/odi.12931

    Article  Google Scholar 

  87. Zafar, M.S., et al.: Biomimetic aspects of restorative dentistry biomaterials. Biomimetics (Basel, Switzerland) 5(3), 34 (2020). https://doi.org/10.3390/biomimetics5030034

    Article  Google Scholar 

  88. Zaky, S.H., Cancedda, R.: Engineering craniofacial structures: facing the challenge. J. Dent. Res. 88(12), 1077–1091 (2009). https://doi.org/10.1177/0022034509349926

    Article  Google Scholar 

  89. Zhang, W., Vazquez, B., Oreadi, D., Yelick, P.C.: Decellularized tooth bud scaffolds for tooth regeneration. J. Dent. Res. 96(5), 516–523 (2017). https://doi.org/10.1177/0022034516689082

    Article  Google Scholar 

  90. Zhang, Y., Zhao, W., Jia, L., Xu, N., Xiao, Y., Li, Q.: The application of stem cells in tissue engineering for the regeneration of periodontal defects in randomized controlled trial: a systematic review and meta-analysis. J. Evidence-Based Dental Pract. 22(2), 101713 (2022). https://doi.org/10.1016/j.jebdp.2022.101713

    Article  Google Scholar 

  91. Zhang, W., Yelick, P.C.: Tooth repair and regeneration: potential of dental stem cells. Trends Mol. Med. 27(5), 501–511 (2021). https://doi.org/10.1016/j.molmed.2021.02.005

    Article  Google Scholar 

  92. Zheng, C., Chen, J., Liu, S., Jin, Y.: Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int. J. Oral Sci. 11(3) (2019). https://doi.org/10.1038/s41368-019-0060-3

  93. Zhou, W., et al.: Single-cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin. Amer. J. Sports Med. 47(7), 1722–1733 (2019). https://doi.org/10.1177/0363546519848678

    Article  Google Scholar 

  94. Zivkovic, P., Petrovic, V., Najman, S., Stefanovic, V.: Stem cell-based dental tissue engineering. Scientific World J. 10, 901–916 (2010). https://doi.org/10.1100/tsw.2010.81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dženita Omerkić Dautović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Omerkić Dautović, D., Hodžić, B., Omerkić, S. (2024). Application of Stem Cells in Dentistry: A Review Article. In: Badnjević, A., Gurbeta Pokvić, L. (eds) MEDICON’23 and CMBEBIH’23. MEDICON CMBEBIH 2023 2023. IFMBE Proceedings, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-031-49068-2_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49068-2_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49067-5

  • Online ISBN: 978-3-031-49068-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics