Skip to main content

Biosensor for Rapid Methods for the Detection of Viruses

  • Conference paper
  • First Online:
MEDICON’23 and CMBEBIH’23 (MEDICON 2023, CMBEBIH 2023)

Abstract

Infectious diseases caused by viruses are a big problem and a threat to public health. Rapid diagnosis of these diseases is critical for effective clinical outcomes. In vitro diagnostics often require centralized laboratories and large and expensive devices. Recently, biosensors have been developed for the rapid detection of viral particles. This review compiles different types of biosensors and their principles. The focus has been placed on biosensors used for the detection of Influenza A and HIV. The method of detection, detection time, sensitivity, and accuracy of these biosensors were explained and used for the comparison. The properties of gold nanoparticles, DNA aptamers, and antibodies against viral proteins enabled them to be the most efficient materials for designing biosensors for Influenza A. Electrochemical, piezoelectric, mechanical, and optical sensors for the detection of HIV are described. Some of their advantages and disadvantages are mentioned. This review analyzed 26 papers which are dated from 2010 to 2020. A significant amount of these studies has been focused on the application of nanoparticles for improving the accuracy of sensing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan, Y.K., Gack, M.U.: Viral evasion of intracellular DNA and RNA sensing. Nat. Rev. Microbiol. 14, 360–373 (2016)

    Article  Google Scholar 

  2. Marston, H.D., Folkers, G.K., Morens, D.M., Fauci, A.S.: Emerging viral diseases: Confronting threats with New Technologies. Sci. Transl. Med. 6 (2014)

    Google Scholar 

  3. Afzal, A., Mujahid, A., Schirhagl, R., Bajwa, S., Latif, U., Feroz, S.: Gravimetric viral diagnostics: QCM based biosensors for early detection of viruses. Chemosensors. 5, 7 (2017)

    Article  Google Scholar 

  4. Lee, B.W., Bey, R.F., Baarsch, M.J., Simonson, R.R.: ELISA method for detection of influenza A infection in swine. J. Vet. Diagn. Invest. 5, 510–515 (1993)

    Article  Google Scholar 

  5. Hoet, A.E., Chang, K.-O., Saif, L.J.: Comparison of Elisa and RT-PCR versus immune electron microscopy for detection of bovine torovirus (Breda virus) in calf fecal specimens. J. Vet. Diagn. Invest. 15, 100–106 (2003)

    Article  Google Scholar 

  6. Mokhtarzadeh, A., et al.: Nanomaterial-based biosensors for detection of pathogenic virus. TrAC, Trends Anal. Chem. 97, 445–457 (2017)

    Article  Google Scholar 

  7. Grieshaber, D., MacKenzie, R., Vörös, J., Reimhult, E.: Electrochemical biosensors - sensor principles and Architectures. Sensors 8, 1400–1458 (2008)

    Article  Google Scholar 

  8. Dalal, A., Mohan, H., Prasad, M., Pundir, C.S.: Detection methods for influenza A H1N1 virus with special reference to biosensors: a review. Biosci. Rep. 40 (2020)

    Google Scholar 

  9. Badnjevic, A.: Evidence-based maintenance of medical devices: current shortage and pathway towards solution. Tech. Health Care. 1–13 (2022). https://doi.org/10.3233/thc-229005

  10. Badnjević, A., Avdihodžić, H., Gurbeta Pokvić, L.: Artificial intelligence in medical devices: past, present and future. Psychiatria Danubina. 33, S336–S341 (2021)

    Google Scholar 

  11. Gurbeta, L., Badnjević, A.: Inspection process of medical devices in healthcare institutions: software solution. Heal. Technol. 7, 109–117 (2016). https://doi.org/10.1007/s12553-016-0154-2

    Article  Google Scholar 

  12. Yu, X., Jiao, Y., Chai, Q.: Applications of gold nanoparticles in biosensors. Nano LIFE 06, 1642001 (2016)

    Article  Google Scholar 

  13. Draz, M.S., Shafiee, H.: Applications of gold nanoparticles in virus detection. Theranostics 8, 1985–2017 (2018)

    Article  Google Scholar 

  14. Sayhi, M., et al.: Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen printed carbon microelectrode. Biosens. Bioelectron. 107, 170–177 (2018)

    Article  Google Scholar 

  15. Bai, H., Wang, R., Hargis, B., Lu, H., Li, Y.: A SPR aptasensor for detection of avian influenza virus H5N1. Sensors 12, 12506–12518 (2012)

    Article  Google Scholar 

  16. Lee, T., et al.: Fabrication of electrochemical biosensor consisted of multi-functional DNA structure/porous au nanoparticle for Avian Influenza Virus (H5N1) in chicken serum. Mater. Sci. Eng., C 99, 511–519 (2019)

    Article  Google Scholar 

  17. Lee, K.G., et al.: Development of a plastic-based microfluidic immunosensor chip for detection of H1N1 influenza. Sensors 12, 10810–10819 (2012)

    Article  Google Scholar 

  18. Jiang, L., et al.: Development and evaluation of a polydiacetylene based biosensor for the detection of H5 influenza virus. J. Virol. Methods 219, 38–45 (2015)

    Article  Google Scholar 

  19. Lin, J., et al.: An impedance immunosensor based on low-cost microelectrodes and specific monoclonal antibodies for rapid detection of avian influenza virus H5N1 in chicken swabs. Biosens. Bioelectron. 67, 546–552 (2015)

    Article  Google Scholar 

  20. Zheng, L., et al.: A sandwich HIV P24 amperometric immunosensor based on a direct gold electroplating-modified electrode. Molecules 17, 5988–6000 (2012)

    Article  Google Scholar 

  21. Shafiee, H., Lidstone, E.A., Jahangir, M., Inci, F., Hanhauser, E., Henrich, T.J., Kuritzkes, D.R., Cunningham, B.T., Demirci, U.: Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci. Rep. 4 (2014)

    Google Scholar 

  22. Lu, C.-H., et al.: Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens. Bioelectron. 31, 439–444 (2012)

    Article  Google Scholar 

  23. Wu, S., He, Q., Tan, C., Wang, Y., Zhang, H.: Graphene-based electrochemical sensors. Small 9, 1160–1172 (2013)

    Article  Google Scholar 

  24. Gilbert, M., Kirihara, J., Mills, J.: Enzyme-linked immunoassay for human immunodeficiency virus type 1 envelope glycoprotein 120. J. Clin. Microbiol. 29, 142–147 (1991)

    Article  Google Scholar 

  25. Lifson, M.A., et al.: Advances in biosensing strategies for HIV-1 detection, diagnosis, and therapeutic monitoring. Adv. Drug Deliv. Rev. 103, 90–104 (2016)

    Article  Google Scholar 

  26. Huang, Y., Xu, J., Liu, J., Wang, X., Chen, B.: Disease-related detection with electrochemical biosensors: a review. Sensors 17, 2375 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Deumić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deumić, S., Lavić, A., Crnčević, N., Pramenković, E., Deumić, A. (2024). Biosensor for Rapid Methods for the Detection of Viruses. In: Badnjević, A., Gurbeta Pokvić, L. (eds) MEDICON’23 and CMBEBIH’23. MEDICON CMBEBIH 2023 2023. IFMBE Proceedings, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-031-49068-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49068-2_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49067-5

  • Online ISBN: 978-3-031-49068-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics