Skip to main content

HPLC Q-TOF LC/MS Analysis of Inulin in Foods: Development of an Innovative Chromatography Method for Nutritional Enhancement

  • Conference paper
  • First Online:
MEDICON’23 and CMBEBIH’23 (MEDICON 2023, CMBEBIH 2023)

Abstract

Ensuring the quality and safety of our food is crucial for maintaining our health and well-being. Many plants, including chicory root, wheat bran, Jerusalem artichokes, garlic, onions, and asparagus, contain a kind of dietary fiber called inulin, a soluble dietary fiber known to have a variety of health benefits. These health advantages have been demonstrated, including bettering gut health, lowering the risk of chronic illnesses including diabetes and heart disease, and helping with weight control. High-performance liquid chromatography (HPLC) and mass spectrometry methods like Q-TOF and ELSD are used to examine the inulin content in meals. With the aid of these methods, inulin can be precisely detected and quantified, and its chemical makeup identified. In the area of food bioengineering, chromatography, and inulin analysis have the potential to produce ground-breaking findings. The choice of chromatography column and mobile phase depends on the specific analysis requirements. Researchers can create brand-new functional foods that improve health and ward off chronic diseases by finding and comprehending the features of inulin and other dietary fibers. By accurately measuring inulin content in various foods, chromatography analysis contributes to a better understanding of inulin's role in preventing and managing chronic diseases, facilitating the development of inulin-rich foods for improved health outcomes. In summary, inulin is a beneficial dietary fiber with a wide range of health advantages. Accurately detecting and assessing the inulin content of foods using mass spectrometry and HPLC techniques is essential for making breakthroughs in the field of food bioengineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization, “Food safety,” Who.int, 19 May 2022. https://www.who.int/news-room/fact-sheets/detail/food-safety

  2. Forbes, S.C., Holroyd-Leduc, J.M., Poulin, M.J., Hogan, D.B.: Effect of nutrients, dietary supplements and vitamins on cognition: a systematic review and meta-analysis of randomized controlled trials. Can. Geriatr. J. 18(4) (2015). https://doi.org/10.5770/cgj.18.189

  3. Samtiya, M., Matthews, K.R., Dhewa, T., Puniya, A.K.: Antimicrobial resistance in the food chain: trends, mechanisms, pathways, and possible regulation strategies. Foods 11(19), 2966 (2022). https://doi.org/10.3390/foods11192966

    Article  Google Scholar 

  4. Petrescu, D.C., Vermeir, I., Petrescu-Mag, R.M.: Consumer understanding of food quality, healthiness, and environmental impact: a cross-national perspective. Int. J. Environ. Res. Pub. Health 17(1), 169 (2019). https://doi.org/10.3390/ijerph17010169

    Article  Google Scholar 

  5. Palafox-Carlos, H., Ayala-Zavala, J.F., González-Aguilar, G.A.: The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci. 76(1), R6–R15 (2011). https://doi.org/10.1111/j.1750-3841.2010.01957.x

    Article  Google Scholar 

  6. Redondo-Cuenca, A., et al.: Nutritional composition of green asparagus (Asparagus officinalis L.), edible part and by-products, and assessment of their effect on the growth of human gut-associated bacteria. Food Res. Int. (Ottawa, Ont.) 163, 112284 (2023). https://doi.org/10.1016/j.foodres.2022.112284

  7. Escobar-Ledesma, F.R., Sánchez-Moreno, V.E., Vera, E., Ciobotă, V., Jentzsch, P.V., Jaramillo, L.: Extraction of inulin from Andean plants: an approach to non-traditional crops of Ecuador. Molecules 25(21), 5067 (2020). https://doi.org/10.3390/molecules25215067

    Article  Google Scholar 

  8. Seifert, S., Watzl, B.: Inulin and oligofructose: review of experimental data on immune modulation. J. Nutr. 137(11), 2563S2567S (2007). https://doi.org/10.1093/jn/137.11.2563s

  9. Chaluvaraju, K., Niranjan, M., Manjuthej, T., Zaranappa, T., Mane, K.: Review of insulin and its analogues in diabetes mellitus. J. Basic Clin. Pharm. 3(2), 283 (2012). https://doi.org/10.4103/0976-0105.103822

    Article  Google Scholar 

  10. Ahmed, W., Rashid, S.: Functional and therapeutic potential of inulin: a comprehensive review. Crit. Rev. Food Sci. Nutr. 59(1), 1–13 (2017). https://doi.org/10.1080/10408398.2017.1355775

    Article  MathSciNet  Google Scholar 

  11. Cani, P.D., et al.: Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr. 90(5), 1236–1243 (2009). https://doi.org/10.3945/ajcn.2009.28095

    Article  Google Scholar 

  12. Roberfroid, M., et al.: Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104(S2), S1–S63 (2010). https://doi.org/10.1017/s0007114510003363

    Article  Google Scholar 

  13. Delzenne, N.M., Cani, P.D.: A place for dietary fibre in the management of the metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care 8(6), 636–640 (Nov.2005). https://doi.org/10.1097/01.mco.0000171124.06408.71

  14. Rastmanesh, R.: High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem. Biol. Interact. 189(1–2), 1–8 (2011). https://doi.org/10.1016/j.cbi.2010.10.002

  15. Bird, I.M.: High performance liquid chromatography: principles and clinical applications. BMJ: Br. Med. J. 299(6702), 783–787 (1989). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1837629/

  16. Quadrupole time-of-flight mass spectrometry: a paradigm shift in toxicology screening applications. Clin. Biochem. Rev. 40(3), 135–146 (2019). https://doi.org/10.33176/aacb-19-00023

  17. Corradini, C., Cavazza, A., Bignardi, C.: High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. Int. J. Carbohydr. Chem. 2012, e487564 (2012). https://doi.org/10.1155/2012/487564

  18. Hao, Q.-X., et al.: [Rapidly identify oligosaccharides in Morinda officinalis by UPLC-Q-TOF-MSE]. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Med. 43(6), 1201–1208 (2018). https://doi.org/10.19540/j.cnki.cjcmm.2018.0046

  19. Slavin, J.: Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4), 1417–1435 (2013). https://doi.org/10.3390/nu5041417

    Article  Google Scholar 

  20. Shoaib, M., et al.: Inulin: properties, health benefits and food applications. Carbohyd. Polym. 147, 444–454 (2016). https://doi.org/10.1016/j.car-bpol.2016.04.020

  21. Maukonen, J., Saarela, M.: Human gut microbiota: does diet matter? Proceed. Nutr. Soc. 74(1), 23–36 (2015). https://doi.org/10.1017/S0029665114000688

    Article  Google Scholar 

  22. Rahman, K.: Garlic and aging: new insights into an old remedy. Ageing Res. Rev. 2(1), 39–56 (2003). https://doi.org/10.1016/s1568-1637(02)00049-1

    Article  Google Scholar 

  23. Borrelli, F., Capasso, R., Izzo, A.A.: Garlic (Allium Sativum L.): adverse effects and drug interactionsin humans. Mol. Nutr. Food Res. (2007). https://pub-med.ncbi.nlm.nih.gov/17918162/

  24. Sainani, G.S., Desai, D.B., Natu, M.N., Katrodia, K.M., Valame, V.P., Sainani, P.G.: Onion, garlic, and experimental atherosclerosis. Jpn. Heart J. 20(3), 351–357 (1979). https://doi.org/10.1536/ihj.20.351

    Article  Google Scholar 

  25. Younes, A.M., et al.: Effects of onion (Allium cepa) in diets of Oreochromis niloticus: growth improvement, antioxidant, anti-inflammatory and disease resistance perspectives. Aquac. Res. 52(5), 2324–2334 (2021). https://doi.org/10.1111/are.15084

    Article  Google Scholar 

  26. Kim, J.E., et al.: Anti-inflammatory response and muscarinic cholinergic regulation dur ing the laxative effect of asparagus cochinchinensis in loperamide-induced constipation of SD rats. Int. J. Mol. Sci. 20(4) (2019). https://doi.org/10.3390/ijms20040946

  27. Sun, Q., et al.: A novel inulin-type fructan from Asparagus cochinchinensis and its beneficial impact on human intestinal microbiota. Carbohyd. Polym. 247, 116761 (2020). https://doi.org/10.1016/j.carbpol.2020.116761

    Article  Google Scholar 

  28. Li, B., et al.: The effect of inulin and wheat bran on intestinal health and microbiota in the early life of broiler chickens. Poult. Sci. 97(9), 3156–3165 (2018). https://doi.org/10.3382/ps/pey195

    Article  Google Scholar 

  29. Stevenson, L., Phillips, F., O’sullivan, K., Walton, J.: Wheat bran: its composition and benefits to health, a European perspective. Int. J. Food Sci. Nutr. 63(8), 1001–1013 (2012). https://doi.org/10.3109/09637486.2012.687366

    Article  Google Scholar 

  30. Nwafor, I.C., Shale, K., Achilonu, M.C.: Chemical composition and nutritive benefits of chicory(cichorium intybus)as an ideal complementary and/or alternative livestock feed supplement. Sci. World J. 2017, 1–11 (2017). https://doi.org/10.1155/2017/7343928

    Article  Google Scholar 

  31. Yan, M., Zhang, Z., Liu, Y.: Difference analysis of different parts of chicory based on HPLC fingerprint and multi-component content determination. Chin. Herb. Med. 14(2), 317–323 (2022). https://doi.org/10.1016/j.chmed.2022.01.006

    Article  Google Scholar 

  32. Roberfroid, M.: Prebiotics: the concept revisited. J. Nutr. 137(3), 830S837S (2007). https://doi.org/10.1093/jn/137.3.830s

  33. Delzenne, N.M., Williams, C.M.: Prebiotics and lipid metabolism. Curr. Opin. Lipidol. 13(1), 61–67 (2002). https://doi.org/10.1097/00041433-200202000-00009

    Article  Google Scholar 

  34. Petkova, N.: Methods for determination of inulin. www.academia.edu. Accessed 30 March 2023 [Online]. https://www.academia.edu/18963600/METHODS_FOR_DETERMINATION_OF_INULIN

  35. Núñez, O., Lucci, P.: Application of liquid chromatography in food analysis. Foods 9(9), 1277 (2020). https://doi.org/10.3390/foods9091277

    Article  Google Scholar 

  36. Thurman, E.M., Ferrer, I., Zavitsanos, P., Zweigenbaum, J.A.: Identification of imidacloprid metabolites in onion (Allium cepaL.) using high-resolution mass spectrometry and accurate mass tools. Rapid Commun. Mass Spectrom. 27(17), 1891–1903 (2013). https://doi.org/10.1002/rcm.6637

    Article  Google Scholar 

  37. Witzel, K., Matros, A.: Fructans are differentially distributed in root tissues of asparagus. Cells 9(9), 1943 (2020). https://doi.org/10.3390/cells9091943

    Article  Google Scholar 

  38. Gunenc, A., Alswiti, C., Hosseinian, F.: Wheat bran dietary fiber: promising source of prebiotics with antioxidant potential. J. Food Res. 6(2), 1 (2017). https://doi.org/10.5539/jfr.v6n2p1

    Article  Google Scholar 

  39. Pouille, C.L., et al.: Chicory: understanding the effects and effectors of this functional food. Nutrients 14(5), 957 (2022). https://doi.org/10.3390/nu14050957

    Article  Google Scholar 

  40. Moldoveanu, S.C.: 4-Analytical pyrolysis of polymeric carbohydrates. Sci. Dir. (2021). https://www.sciencedirect.com/science/article/pii/B9780128185711000042

  41. Alexander, C., Swanson, K.S., Fahey, G.C., Garleb, K.A.: Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Adv. Nutr. 10(4), 576–589 (2019). https://doi.org/10.1093/advances/nmz004

    Article  Google Scholar 

  42. Sut, S., Franceschi, C., Peron, G., Poloniato, G., Dall’Acqua, S.: Development and validation of an HPLC-ELSD Method for the quantification of 1-triacontanol in solid and liquid samples. Molecules 23(11), 2775 (2018). https://doi.org/10.3390/molecules23112775

  43. Zheng, X., et al.: Development of the HPLC–ELSD method for the determination of phytochelatins and glutathione in Perilla frutescens under cadmium stress conditions. Roy. Soc. Open Sci. 5(5), 171659 (2018). https://doi.org/10.1098/rsos.171659

    Article  Google Scholar 

  44. PubChem, “Inulin,” pubchem.ncbi.nlm.nih.gov. https://pubchem.ncbi.nlm.nih.gov/com-pound/Inulin

  45. Rai, D.K., Tzima, K.: A review on chromatography-mass spectrometry applications on anthocyanin and ellagitannin metabolites of blackberries and raspberries. Foods 10(9), 2150 (2021). https://doi.org/10.3390/foods10092150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dado Latinović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Latinović, D. (2024). HPLC Q-TOF LC/MS Analysis of Inulin in Foods: Development of an Innovative Chromatography Method for Nutritional Enhancement. In: Badnjević, A., Gurbeta Pokvić, L. (eds) MEDICON’23 and CMBEBIH’23. MEDICON CMBEBIH 2023 2023. IFMBE Proceedings, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-031-49062-0_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49062-0_89

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49061-3

  • Online ISBN: 978-3-031-49062-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics