Skip to main content

Voxelization: Multi-target Optimization for Biomedical Volume Rendering

  • Conference paper
  • First Online:
MEDICON’23 and CMBEBIH’23 (MEDICON 2023, CMBEBIH 2023)

Abstract

Almost all existing software for visualization of biomedical volumes provides three-dimensional (3D) rendering. The most common techniques for 3D rendering of volume data are maximum intensity projection (MIP) and direct volume rendering (DVR). Recently, rendering algorithms based on Monte-Carlo path tracing (MCPT) have also been considered. Depending on the algorithm, level of detail, volume size, and transfer function, rendering can be quite slow. In this paper, we present a simple and intuitive voxelization method for biomedical volume rendering optimization. The main advantage of the proposed method, besides the fast structure construction and traversal, is its straightforward application to MIP, DVR and MCPT rendering techniques (multi-target optimization). The same single structure (voxel grid) can be used for empty space skipping, optimized maximum intensity calculation and advanced Woodcock tracking. The performance improvement results suggest the use of the proposed method especially in cases where different rendering techniques are combined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Behlouli, A., Visvikis, D., Bert, J.: Improved woodcock tracking on monte carlo simulations for medical applications. Phys. Med. Biol. 63(22), 225005 (2018)

    Article  Google Scholar 

  2. Chao, Z., Xu, W.: A new general maximum intensity projection technology via the hybrid of u-net and radial basis function neural network. J. Digit. Imaging 34(5), 1264–1278 (2021)

    Article  Google Scholar 

  3. Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels: ray-guided streaming for efficient and detailed voxel rendering. In: Proceedings of the 2009 Symposium on Interactive 3D graphics and games, pp. 15–22 (2009)

    Google Scholar 

  4. Crassin, C., Neyret, F., Sainz, M., Green, S., Eisemann, E.: Interactive indirect illumination using voxel cone tracing. In: Computer Graphics Forum, vol. 30, pp. 1921–1930. Wiley Online Library (2011)

    Google Scholar 

  5. Deakin, L.J., Knackstedt, M.A.: Efficient ray casting of volumetric images using distance maps for empty space skipping. Comput. Visual Media 6, 53–63 (2020)

    Article  Google Scholar 

  6. Hadwiger, M., Al-Awami, A.K., Beyer, J., Agus, M., Pfister, H.: SparseLeap: Efficient empty space skipping for large-scale volume rendering. IEEE Trans. Visual Comput. Graph. 24(1), 974–983 (2017)

    Article  Google Scholar 

  7. Ize, T., Wald, I., Parker, S.G.: Ray tracing with the bsp tree. In: 2008 IEEE Symposium on Interactive Ray Tracing, pp. 159–166. IEEE (2008)

    Google Scholar 

  8. Kutaish, H., Acker, A., Drittenbass, L., Stern, R., Assal, M.: Computer-assisted surgery and navigation in foot and ankle: state of the art and fields of application. EFORT Open Rev. 6(7), 531 (2021)

    Article  Google Scholar 

  9. LaMar, E., Hamann, B., Joy, K.I.: Multiresolution Techniques for Interactive Texture-Based Volume Visualization. IEEE (1999)

    Google Scholar 

  10. Mroz, L., König, A., Gröller, E.: Real-time maximum intensity projection. In: Data Visualization’99: Proceedings of the Joint EUROGRAPHICS and IEEE TCVG Symposium on Visualization in Vienna, Austria, May 26–28, 1999, pp. 135–144. Springer (1999)

    Google Scholar 

  11. Mroz, L., König, A., Gröller, E.: Maximum intensity projection at warp speed. Comput. Graph. 24(3), 343–352 (2000)

    Google Scholar 

  12. Pachowsky, M.L., et al.: Cinematic rendering in rheumatic diseases—photorealistic depiction of pathologies improves disease understanding for patients. Front. Med. 9 (2022)

    Google Scholar 

  13. Sariali, E., Mauprivez, R., Khiami, F., Pascal-Mousselard, H., Catonné, Y.: Accuracy of the preoperative planning for cementless total hip arthroplasty. a randomised comparison between three-dimensional computerised planning and conventional templating. Orthopaed. Traumatol. Surg. Res. 98(2), 151–158 (2012)

    Google Scholar 

  14. Szirmay-Kalos, L., Tóth, B., Magdics, M.: Free path sampling in high resolution inhomogeneous participating media. In: Computer Graphics Forum, vol. 30, pp. 85–97. Wiley Online Library (2011)

    Google Scholar 

  15. Wang, C., et al.: Patient-specific instrument-assisted minimally invasive internal fixation of calcaneal fracture for rapid and accurate execution of a preoperative plan: a retrospective study. BMC Musculoskelet. Disord. 21, 1–11 (2020)

    Google Scholar 

  16. Woodcock, E., Murphy, T., Hemmings, P., Longworth, S.: Techniques used in the gem code for monte carlo neutronics calculations in reactors and other systems of complex geometry. In: Proc. Conf. Applications of Computing Methods to Reactor Problems, vol. 557. Argonne National Laboratory (1965)

    Google Scholar 

  17. Zellmann, S.: Comparing hierarchical data structures for sparse volume rendering with empty space skipping (2019). arXiv preprint arXiv:1912.09596

  18. Zhou, S.: Woodcock tracking based fast Monte Carlo direct volume rendering method. J. Syst. Simul. 29(5), 1125 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Denisova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denisova, E., Manetti, L., Bocchi, L., Iadanza, E. (2024). Voxelization: Multi-target Optimization for Biomedical Volume Rendering. In: Badnjević, A., Gurbeta Pokvić, L. (eds) MEDICON’23 and CMBEBIH’23. MEDICON CMBEBIH 2023 2023. IFMBE Proceedings, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-031-49062-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49062-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49061-3

  • Online ISBN: 978-3-031-49062-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics