Skip to main content

YOLOMM – You Only Look Once for Multi-modal Multi-tasking

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2023)

Abstract

Autonomous driving can reduce the number of road accidents due to human error and result in safer roads. One important part of the system is the perception unit, which provides information about the environment surrounding the car. Currently, most manufacturers are using not only RGB cameras, which are passive sensors that capture light already in the environment but also Lidar. This sensor actively emits laser pulses to a surface or object and measures reflection and time-of-flight. Previous work, YOLOP, already proposed a model for object detection and semantic segmentation, but only using RGB. This work extends it for Lidar and evaluates performance on KITTI, a public autonomous driving dataset. The implementation shows improved precision across all objects of different sizes. The implementation is entirely made available: https://github.com/filipepcampos/yolomm.

This work is supported by European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project n 047264; Funding Reference: POCI-01-0247-FEDER-047264].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/filipepcampos/yolomm.

References

  1. Behley, J., et al.: Towards 3D LiDAR-based semantic scene understanding of 3D point cloud sequences: the SemanticKITTI dataset. Int. J. Robot. Res. 40(8–9), 959–967 (2021). https://doi.org/10.1177/02783649211006735

    Article  Google Scholar 

  2. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: YOLACT: real-time instance segmentation (2019)

    Google Scholar 

  3. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving (2020)

    Google Scholar 

  4. Chan, C.Y.: Advancements, prospects, and impacts of automated driving systems. Int. J. Transp. Sci. Technol. 6(3), 208–216 (2017). https://doi.org/10.1016/j.ijtst.2017.07.008, https://www.sciencedirect.com/science/article/pii/S2046043017300035. safer Road Infrastructure and Operation Management

  5. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1907–1915 (2017)

    Google Scholar 

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding (2016)

    Google Scholar 

  7. Deschaud, J.E.: KITTI-CARLA: a KITTI-like dataset generated by CARLA Simulator. arXiv e-prints: arXiv:2109.00892 (2021)

  8. Detlefsen, N.S., et al.: TorchMetrics - measuring reproducibility in PyTorch. J. Open Sour. Softw. 7(70), 4101 (2022). https://doi.org/10.21105/joss.04101

    Article  Google Scholar 

  9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  11. Heuer, F., Mantowsky, S., Bukhari, S.S., Schneider, G.: MultiTask-CenterNet (MCN): efficient and diverse multitask learning using an anchor free approach (2021)

    Google Scholar 

  12. Lee, D.G., Kim, Y.K.: Joint semantic understanding with a multilevel branch for driving perception. Appl. Sci. 12(6), 2877 (2022). https://doi.org/10.3390/app12062877

    Article  Google Scholar 

  13. Liao, Y., Xie, J., Geiger, A.: KITTI-360: a novel dataset and benchmarks for urban scene understanding in 2D and 3D. Pattern Anal. Mach. Intell. (PAMI) 45, 3292–310 (2022)

    Google Scholar 

  14. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106

  16. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation (2018)

    Google Scholar 

  17. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: fast and accurate LiDAR semantic segmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019)

    Google Scholar 

  18. Paek, D.H., Kong, S.H., Wijaya, K.T.: K-lane: lidar lane dataset and benchmark for urban roads and highways. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshop on Autonomous Driving (WAD) (2022)

    Google Scholar 

  19. Sheeny, M., De Pellegrin, E., Mukherjee, S., Ahrabian, A., Wang, S., Wallace, A.: RADIATE: a radar dataset for automotive perception. arXiv preprint: arXiv:2010.09076 (2020)

  20. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  21. Vu, D., Ngo, B., Phan, H.: HybridNets: end-to-end perception network (2022)

    Google Scholar 

  22. Wu, D., et al.: YOLOP: you only look once for panoptic driving perception. Mach. Intell. Res. 19, 1–13 (2022)

    Article  Google Scholar 

  23. Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo P. M. Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Campos, F., Cerqueira, F.G., Cruz, R.P.M., Cardoso, J.S. (2024). YOLOMM – You Only Look Once for Multi-modal Multi-tasking. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469. Springer, Cham. https://doi.org/10.1007/978-3-031-49018-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49018-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49017-0

  • Online ISBN: 978-3-031-49018-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics