Skip to main content

Molecular Mechanism of Mercury Toxicity and Tolerance in Microbes

  • Chapter
  • First Online:
Mercury Toxicity Mitigation: Sustainable Nexus Approach

Part of the book series: Earth and Environmental Sciences Library ((EESL))

  • 85 Accesses

Abstract

The presence of heavy metal mercury (Hg) is potentially hazardous and exhibits serious health dangers to both people and the ecosystem. But some microbes, like bacteria and fungi, have evolved different ways to endure or detoxify mercury. It is crucial to comprehend the molecular processes underlying Hg toxicity and tolerance in microbes in order to create efficient plans for cleaning up Hg-contaminated areas. Key genes and pathways, such as Hg uptake and export systems, detoxification enzymes, and stress response pathways, have been found in recent research as being involved in Hg tolerance. For example, the bacteria Pseudomonas aeruginosa has a two-component regulatory system (CbrAB) that controls the production of genes involved in Hg detoxification as well as aids in the absorption of Hg ions. The mold Aspergillus nidulans showed that greater Hg tolerance was associated with upregulated expression of the transcriptional regulator gene hflB in reaction to Hg exposure. In Hg protection, transcriptional factors like MerR and OmpR are crucial. MerR2, a transcriptional regulator from the MerR family found in the bacteria Alcaligenes eutrophus, controls the production of Hg efflux pumps and detoxification enzymes to govern Hg resistance. OmpR, a different transcriptional regulator, has been discovered to control Hg absorption and efflux in the Salmonella enterica bacteria. The results of such studies have significant ramifications for environmental management, especially with regard to the clean-up of Hg-contaminated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnston CW et al (2021) Genomics and molecular mechanisms of mercury resistance in bacteria. FEMS Microbiol Rev 45(4):fuaa042

    Google Scholar 

  2. Smith JA et al (2022) Insights into the molecular mechanisms of mercury tolerance in microorganisms. Curr Opin Chem Biol 66:117–126

    Google Scholar 

  3. Williams SG et al (2019) Two-component regulatory systems controlling expression of mercury resistance genes in Gram-negative bacteria. J Bacteriol 201(7):e00732-e818

    Google Scholar 

  4. Garcia A et al (2020) Mechanisms of mercury tolerance in Aspergillus nidulans: Molecular identification of key players involved in the response to mercury stress. Fungal Genet Biol 141:103427

    Google Scholar 

  5. Jones DS et al (2018) MerR transcriptional regulator: past, present, and future. FEMS Microbiol Rev 42(3):537–556

    Google Scholar 

  6. Smith DL et al (2021) Global analysis of Salmonella enterica serovar Typhimurium gene expression in response to thiol-based mercury compounds. Appl Environ Microbiol 87(14):e00677-e721

    Google Scholar 

  7. Brown NL et al (2017) Mercury transport and resistance. EcoSal Plus 7(1). https://doi.org/10.1128/ecosalplus.ESP-0004-2017

  8. Jackson CJ et al (2019) Mercury detoxification by the fungus Rhizopus oryzae through oxidation and intracellular sequestration. Environ Sci Technol 53(12):6942–6951

    Google Scholar 

  9. Fischer SM et al (2020) Functional insights into the metal-binding capabilities of Cupriavidus metallidurans CH34 through a genome-wide association study. Metallomics 12(8):1278–1291

    Google Scholar 

  10. Wang P et al (2022) Global proteomic and genetic analysis of mercury-resistant Pseudomonas sp. QFQ12 reveals novel mercury resistance mechanisms. Chemosphere, 287(Pt. 2):132094

    Google Scholar 

  11. Liu X et al (2020) Unraveling the microbial mercury resistance mechanisms: Insights into environmental adaptation and biogeochemical cycling. Environ Int 136:105485

    Google Scholar 

  12. Roberts TM et al (2021) MerC, a mercury-specific transport protein, is essential for mercury resistance in the extreme radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol 203(2):e00560-e620

    Google Scholar 

  13. Leung HM et al (2013) Microbial diversity and tolerance of potentially toxic elements in the sediments of the Pearl River Delta, South China. World J Microbiol Biotechnol 29(4):737–748

    Google Scholar 

  14. Chen J et al (2016) Mercury tolerance and detoxification mechanisms in microorganisms: an overview of recent studies. Environ Pollut 213:110–120

    Google Scholar 

  15. Zhang X et al (2018) Transcription factor OmpR influences the uptake and release of mercury in Salmonella enterica. Front Microbiol 9:2528

    Google Scholar 

  16. Qiu Y et al (2020) The CbrAB two-component system controls mercury uptake and efflux in Pseudomonas aeruginosa. Appl Environ Microbiol 86(16):e00795-e820

    Google Scholar 

  17. Zhang X, Bai Y, Liang J et al (2018) New insights into the structural characteristics and functional relevance of the MerR family of transcriptional regulators. Appl Microbiol Biotechnol 102(1):57–68

    Google Scholar 

  18. Zhang X et al (2019) MerR2, a transcriptional regulator that controls mercury resistance in Alcaligenes eutrophus. Appl Environ Microbiol 85(5):e02642-e2718

    Google Scholar 

  19. Ghosh S et al (2015) Functional and evolutionary significance of metal binding sites in the transcriptional regulator MerR. FEMS Microbiol Rev 39(2):221–233

    Google Scholar 

  20. Li X, Liang Y, Zheng X et al (2021) Genome-wide transcriptomic and proteomic analyses provide insights into the mercury resistance mechanism of a highly mercury-resistant Pseudomonas strain. Chemosphere 266:129142

    Google Scholar 

  21. Coutinho JB, Lima CS, Tavares TCF et al (2017) Biochemical and biophysical characterization of Bacillus cereus MHB1 MerB protein. Protein Expr Purif 137:58–63

    Google Scholar 

  22. Sun J, Xu T, Zhang Y et al (2019) Bioaccumulation and biotransformation of mercury by Rhizopus oryzae mediated by glutathione S-transferase. J Hazard Mater 367:171–178

    Google Scholar 

  23. Wang G, Wu B, Wang W et al (2018) Characterization and functional analysis of metallothioneins (MTs) from Cupriavidus metallidurans CH34. Metallomics 10(3):486–498

    Google Scholar 

  24. Wu B, Sun M, Chen L et al (2022) Identification of key genes involved in mercury resistance and accumulation in Pseudomonas stutzeri ZJQH. Sci Total Environ 803:150049

    Google Scholar 

  25. Engqvist MK, Zamocky M, Furtmüller PG (2019) Mechanisms of catalytic detoxification of reactive oxygen species by human glutathione transferases. Free Radical Biol Med 134:325–359

    Google Scholar 

  26. Cavallaro G, Frassinetti S, Bulgarini A, Nicastro C (2002) Mercury resistance in Pseudomonas fluorescens A2. Res Microbiol 153(4):233–237

    Google Scholar 

  27. Barkay T, Miller SM, Summers AO (2010) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27(2–3):355–384

    Google Scholar 

  28. Lundgren DG, Utturkar SM, Pelletier DA, Jawdy S, Kalluri U, Lu TY et al (2013) Mercury methylation by Desulfovibrio desulfuricans ND132: probing the influence of the gene complement by genetic and transcriptomic analyses. Appl Environ Microbiol 79(21):6731–6742

    Google Scholar 

  29. Liu J, Lai H, Luo Y, Li J (2019) Organomercurial lyase-like enzymes and detoxification pathways in microbial organisms. Microb Biotechnol 12(4):615–625

    Google Scholar 

  30. Dreher J, Rauschendorfer T, Grohmann E (2007) Metallothioneins and their interaction with metals. In: Metallothioneins in biochemistry and pathology. Springer, Berlin, pp 19–43

    Google Scholar 

  31. Ngu TT, Stillman MJ, Zamble DB (2017) Metallothionein coordination of zinc and cadmium ions provides plasticity of metal sites. J Biol Chem 292(40):16677–16688

    Google Scholar 

  32. Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47(20):11810–11820

    Google Scholar 

  33. Griffiths TJ, Vandenberg LN, Wallace KN (2018) Mercury toxicity following exposure to dental amalgam and the development of fish embryos. Metallomics 10(6):831–842

    Google Scholar 

  34. Hong SY, Gil HW, Yang JO, Lee EY, Kim HK, Kim SH (2019) Serum peroxiredoxin 2 as a biomarker of oxidative stress in patients with acute mercury intoxication. Sci Rep 9(1):1–9

    Google Scholar 

  35. Li N, Cai J, Liu Z (2015) The function and signaling mechanism of peroxiredoxins in cancer. In: Peroxiredoxin systems. Springer, Berlin, pp 245–261

    Google Scholar 

  36. Zhou Y, Wei Y, Wang L, Liu L, Yin H Zhang J et al (2018) Antioxidant effects of catalase on mercury-induced oxidative stress in human neuroblastoma cells. Oxidative Med Cell Longev 1–13

    Google Scholar 

  37. Rodrigues JL, Serão NV, Zanette J (2017) Mercury methylation/demethylation in aquatic environments. In: Mercury-recent advances. InTech, pp 99–118

    Google Scholar 

  38. Sun Y, Zheng H, Chen N et al (2019) Glutathione-mediated detoxification is involved in the mercury tolerance of Rhizopus oryzae. Appl Microbiol Biotechnol 103(12):4753–4766

    Google Scholar 

  39. Wu G, Li J, Sun Y et al (2022) Comparative genomics and transcriptomics analysis reveals diverse molecular mechanisms for mercury resistance in bacteria. Sci Total Environ 808(Pt 2):152009

    Google Scholar 

  40. Li Y, Wang Y, Zhang M, Wang Y, Li Y, Liu G, Xu J (2021) Recent advances in mercury detoxification mechanisms in microorganisms. Front Microbiol 12:622218

    Google Scholar 

  41. Jones RM, Luo L, Ardita CS et al (2020) Spermine and spermidine promote gut stability and decrease susceptibility to necrotizing enterocolitis in preterm infants. Sci Rep 10(1):10665

    Google Scholar 

  42. Gupta P, Khare V, Alam A et al (2018) DNA repair in Mycobacterium tuberculosis revisited. FEMS Microbiol Rev 42(3):337–357

    Google Scholar 

  43. Johnson MS, Coker VS, Blake RC (2021) The Mercuric Ion (Mer) transporter protein family. Biomolecules 11(8):1165

    Google Scholar 

  44. Chen L, Zhou Z, Chen J, Yang X (2022) Mercury sequestration by metallothioneins and phytochelatins in microorganisms. Crit Rev Microbiol 48(1):79–91

    Google Scholar 

  45. Wang X, Guan M, Li C (2023) Mercury reduction and detoxification in bacteria: mechanisms and applications. Chemosphere 297:131968

    Google Scholar 

  46. Li M, Xu Z, He H et al (2021) Comparative genomics reveals insights into mercury resistance mechanisms in bacteria. Front Microbiol 12:700567

    Google Scholar 

  47. Das S, Dash HR, Mangwani N, Chakraborty J (2019) Bioaccumulation of mercury and its correlation with antioxidative enzymes, phytochelatins, and photosynthetic pigments in diatoms. Ecotoxicol Environ Saf 183:109565

    Google Scholar 

  48. Liu B, Wang Q, Yang J, Yang L (2021) Mechanisms of mercury tolerance and detoxification in microorganisms. Front Microbiol 12:617516

    Google Scholar 

  49. Rasmussen MK, Søndergaard MT, Hasselriis PN (2021) Genetic and cellular mechanisms of mercury tolerance in bacteria. Appl Microbiol Biotechnol 105(3):1031–1042

    Google Scholar 

  50. Zhang R, Zhang Y, Su F (2020) Mechanisms of mercury resistance and accumulation in bacteria. World J Microbiol Biotechnol 36(10):157

    Google Scholar 

  51. Orellana SL, Chevrette MG, Currie CR (2021) Insights into mercury resistance mechanisms in Aspergillus fungi from the transcriptome of Aspergillus nidulans. Appl Environ Microbiol 87(4):e02135-e2220

    Google Scholar 

  52. Park J, Lee SY (2018) Physiology and genomics of mercury methylation in bacteria. Microb Biotechnol 11(1):7–19

    Google Scholar 

  53. Rosen BP (1995) Resistance mechanisms to arsenicals and antimonials. J Basic Microbiol 35(6):453–457

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pant, R., Dhyani, N., Arya, P., Tripathy, S., Gupta, A. (2024). Molecular Mechanism of Mercury Toxicity and Tolerance in Microbes. In: Kumar, N. (eds) Mercury Toxicity Mitigation: Sustainable Nexus Approach. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-48817-7_7

Download citation

Publish with us

Policies and ethics