Skip to main content

Role of Federated Learning for Internet of Vehicles: A Systematic Review

  • Conference paper
  • First Online:
Artificial Intelligence of Things (ICAIoT 2023)

Abstract

The Internet of Vehicles (IoV) is one of the most exciting and practical ways that corporations and academics are interested in, especially by employing coordinated unmanned vehicles to explore areas like the automobile industry. To provide long-term possibilities for task investigations, the IoV connects vehicles, transportation networks, and communication infrastructure. Data privacy, however, may be compromised by the coordination of information gathering from numerous sources. Federated Learning (FL) is the answer to these concerns of privacy, scalability, and high availability. A well-distributed learning framework designed for edge devices is federated learning. It makes use of large-scale processing from edge devices while allowing private data to remain locally. In this work, different categories of federated learning have been discussed. A review of various systems implementing FL for IoV has been presented followed by the applications and challenges of FL in the IoV paradigm. The paper concludes by providing future research directions for FL in the IoV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, C., et al.: A survey on federated learning. Knowledge-Based Syst. 216, (Mar. 2021). https://doi.org/10.1016/J.KNOSYS.2021.106775

  2. Manias, D.M., Shami, A.: Making a case for federated learning in the internet of vehicles and intelligent transportation systems. IEEE Netw. 35(3), 88–94 (2021)

    Google Scholar 

  3. Tang, F., Kawamoto, Y., Kato, N., Liu, J.: Future intelligent and secure vehicular network toward 6G: Machine-learning approaches. Proc. IEEE 108(2), 292–307 (2019)

    Google Scholar 

  4. Du, Z., Wu, C., Yoshinaga, T., Yau, K.-L.A., Ji, Y., Li, J.: Federated learning for vehicular internet of things: Recent advances and open issues. IEEE Open J. Comput. Soc. 1, 45–61 (2020)

    Google Scholar 

  5. Brik, B., Ksentini, A., Bouaziz, M.: Federated learning for UAVs-enabled wireless networks: use cases, challenges, and open problems. IEEE Access 8, 53841–53849 (2020)

    Google Scholar 

  6. Yu, Z., et al.: Mobility-aware proactive edge caching for connected vehicles using federated learning. IEEE Trans. Intell. Transp. Syst. 22(8), 5341–5351 (2020)

    Google Scholar 

  7. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)

    Google Scholar 

  8. Aono, Y., et al.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2017)

    Google Scholar 

  9. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: A client level perspective. arXiv Prepr. arXiv1712.07557 (2017)

    Google Scholar 

  10. Wei, J.: Managed communication and consistency for fast data-parallel iterative analytics. In: Proceedings of the Sixth ACM Symposium on Cloud Computing, pp. 381–394 (2015)

    Google Scholar 

  11. Mansour, Y., Mohri, M., Ro, J., Suresh, A.T.: Three approaches for personalization with applications to federated learning. arXiv Prepr. arXiv2002.10619 (2020)

    Google Scholar 

  12. Chen, Y.-R., Rezapour, A., Tzeng, W.-G.: Privacy-preserving ridge regression on distributed data. Inf. Sci. (Ny). 451, 34–49 (2018)

    Google Scholar 

  13. Kang, J., et al.: Reliable federated learning for mobile networks. IEEE Wirel. Commun. 27(2), 72–80 (2020)

    Google Scholar 

  14. Wan, L., Ng, W.K., Han, S., Lee, V.C.S.: Privacy-preservation for gradient descent methods. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 775–783 (2007)

    Google Scholar 

  15. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, pp. 1273–1282 (2017)

    Google Scholar 

  16. Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., Talwar, K.: Semi-supervised knowledge transfer for deep learning from private training data. arXiv Prepr. arXiv1610.05755 (2016)

    Google Scholar 

  17. Kim, H., Park, J., Bennis, M., Kim, S.-L.: Blockchained on-device federated learning. IEEE Commun. Lett. 24(6), 1279–1283 (2019)

    Google Scholar 

  18. Nikolaenko, V., et al.: Privacy-preserving ridge regression on hundreds of millions of records. In: 2013 IEEE symposium on security and privacy, pp. 334–348 (2013)

    Google Scholar 

  19. Cheng, K.: Secureboost: a lossless federated learning framework. IEEE Intell. Syst. 36(6), 87–98 (2021)

    Google Scholar 

  20. Abadi, M.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pp. 308–318 (2016)

    Google Scholar 

  21. Agarwal, N., Suresh, A.T., Yu, F.X.X., Kumar, S., McMahan, B.: cpSGD: Communication-efficient and differentially-private distributed SGD. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  22. Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis: Linear regression and classification. In: Proceedings of the 2004 SIAM international conference on data mining, pp. 222–233 (2004)

    Google Scholar 

  23. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)

    Google Scholar 

  24. Saputra, Y.M., et al.: Dynamic federated learning-based economic framework for internet-of-vehicles. IEEE Trans. Mob. Comput. 1233(c), 1–20 (2021). https://doi.org/10.1109/TMC.2021.3122436

  25. Zhou, X., et al.: Two-layer federated learning with heterogeneous model aggregation for 6g supported internet of vehicles. IEEE Trans. Veh. Technol. 70(6), 5308–5317 (2021)

    Google Scholar 

  26. Lu, Y., Huang, X., Zhang, K., Maharjan, S., Zhang, Y.: Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Trans. Veh. Technol. 69(4), 4298–4311 (2020)

    Google Scholar 

  27. Yang, H.H., Liu, Z., Quek, T.Q.S., Poor, H.V.: Scheduling policies for federated learning in wireless networks. IEEE Trans. Commun. 68(1), 317–333 (2019)

    Google Scholar 

  28. Xie, C., Koyejo, S., Gupta, I.: Asynchronous federated optimization. arXiv Prepr. arXiv1903.03934 (2019)

    Google Scholar 

  29. Li, T., et al.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  30. Amiri, M.M., Gündüz, D., Kulkarni, S.R., Poor, H.V.: Convergence of update aware device scheduling for federated learning at the wireless edge. IEEE Trans. Wirel. Commun. 20(6), 3643–3658 (2021)

    Google Scholar 

  31. Zhan, Y., Li, P., Qu, Z., Zeng, D., Guo, S.: A learning-based incentive mechanism for federated learning. IEEE Internet Things J. 7(7), 6360–6368 (2020)

    Google Scholar 

  32. Khan, L.U.: Federated learning for edge networks: Resource optimization and incentive mechanism. IEEE Commun. Mag. 58(10), 88–93 (2020)

    Google Scholar 

  33. Liu, Y., Zhang, S., Zhang, C., Yu, J.J.Q.: FedGRU: privacy-preserving traffic flow prediction via federated learning. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6 (2020). https://doi.org/10.1109/ITSC45102.2020.9294453

  34. Sarikaya, Y., Ercetin, O.: Motivating workers in federated learning: A stackelberg game perspective. IEEE Netw. Lett. 2(1), 23–27 (2019)

    Google Scholar 

  35. Kang, J., Xiong, Z., Niyato, D., Xie, S., Zhang, J.: Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory. IEEE Internet Things J. 6(6), 10700–10714 (2019)

    Google Scholar 

  36. Zou, Y., Shen, F., Yan, F., Lin, J., Qiu, Y.: Reputation-based regional federated learning for knowledge trading in blockchain-enhanced IOV. In: 2021 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2021)

    Google Scholar 

  37. Abad, M.S.H., Ozfatura, E., Gunduz, D., Ercetin, O.: “Hierarchical federated learning across heterogeneous cellular networks. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8866–8870 (2020)

    Google Scholar 

  38. Wang, S., Liu, F., Xia, H.: Content-based vehicle selection and resource allocation for federated learning in iov. In: 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 1–7 (2021)

    Google Scholar 

  39. Anand, A., Rani, S., Anand, D., Aljahdali, H.M., Kerr, D.: An efficient CNN-based deep learning model to detect malware attacks (CNN-DMA) in 5G-IoT healthcare applications. Sensors 21(19), 6346 (2021)

    Google Scholar 

  40. Bonawitz, K.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the (2017) ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)

    Google Scholar 

  41. Price, W.N., Cohen, I.G.: Privacy in the age of medical big data. Nat. Med. 25(1), 37–43 (2019)

    Google Scholar 

  42. Zhao, P., et al.: Federated learning-based collaborative authentication protocol for shared data in social IoV. IEEE Sens. J. 22(7), 7385–7398 (2022)

    Google Scholar 

  43. Hammoud, A., Otrok, H., Mourad, A., Dziong, Z.: On demand fog federations for horizontal federated learning in IoV. IEEE Trans. Netw. Serv. Manag. 19(3), 3062–3075 (2022)

    Google Scholar 

  44. Xie, K.: Efficient federated learning with spike neural networks for traffic sign recognition. IEEE Trans. Veh. Technol. 71(9), 9980–9992 (2022)

    Google Scholar 

  45. Peng, O., et al.: Bflp: an adaptive federated learning framework for internet of vehicles. Mob. Inf. Syst. 2021, 1–18 (2021)

    Google Scholar 

  46. Tao, X., Zhang, X., Liu, J., Xu, J.: Privacy-preserved federated learning for autonomous driving. IEEE Trans. Intell. Transp. Syst. 23(7), 8423–8434 (2021)

    Google Scholar 

  47. Liu, Y., James, J.Q., Kang, J., Niyato, D., Zhang, S.: Privacy-preserving traffic flow prediction: a federated learning approach. IEEE Internet Things J. 7(8), 7751–7763 (2020)

    Google Scholar 

  48. Wang, Y., Su, Z., Zhang, N., Benslimane, A.: Learning in the air: Secure federated learning for UAV-assisted crowdsensing. IEEE Trans. Netw. Sci. Eng. 8(2), 1055–1069 (2020)

    Google Scholar 

  49. Aloqaily, M., Al Ridhawi, I., Guizani, M.: Energy-aware blockchain and federated learning-supported vehicular networks. IEEE Trans. Intell. Transp. Syst. 23(11), 22641–22652 (2021)

    Google Scholar 

  50. Wang, R., Li, H., Liu, E.: Blockchain-based federated learning in mobile edge networks with application in internet of vehicles. arXiv Prepr. arXiv2103.01116 (2021)

    Google Scholar 

  51. Liu, H.: Blockchain and federated learning for collaborative intrusion detection in vehicular edge computing. IEEE Trans. Veh. Technol. 70(6), 6073–6084 (2021)

    Google Scholar 

  52. Joshi, G.P., et al.: Toward blockchain-enabled privacy-preserving data transmission in cluster-based vehicular networks. Electronics 9(9), 1358 (2020)

    Google Scholar 

  53. Hua, G., et al.: Blockchain-based federated learning for intelligent control in heavy haul railway. IEEE Access 8, 176830–176839 (2020)

    Google Scholar 

  54. Chai, H., Leng, S., Chen, Y., Zhang, K.: A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in internet of vehicles. IEEE Trans. Intell. Transp. Syst. 22(7), 3975–3986 (2020)

    Google Scholar 

  55. Shen, C., Zhu, L., Hua, G., Zhou, L., Zhang, L.: A blockchain based federal learning method for urban rail passenger flow prediction. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–5 (2020)

    Google Scholar 

  56. Lu, Y., Huang, X., Zhang, K., Maharjan, S., Zhang, Y.: Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Trans. Veh. Technol. 69(4), 4298–4311 (2020). https://doi.org/10.1109/TVT.2020.2973651

  57. Lee, J.S.H.: From discovery to practice and survivorship: building a national real-world data learning healthcare framework for military and veteran cancer patients. Clin. Pharmacol. & Ther. 106(1), 52–57 (2019)

    Google Scholar 

  58. Rieke, N.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)

    Google Scholar 

  59. Jain, B., Brar, G., Malhotra, J., Rani, S., Ahmed, S.H.: A cross layer protocol for traffic management in Social Internet of Vehicles. Futur. Gener. Comput. Syst. 82, 707–714 (2018). https://doi.org/10.1016/j.future.2017.11.019

  60. Seth, I., Guleria, K., Panda, S.N.: Introducing intelligence in vehicular ad hoc networks using machine learning algorithms. ECS Trans. 107(1), 8395 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishu Chhabra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bala, P.H.M., Chhabra, R. (2024). Role of Federated Learning for Internet of Vehicles: A Systematic Review. In: Challa, R.K., et al. Artificial Intelligence of Things. ICAIoT 2023. Communications in Computer and Information Science, vol 1930. Springer, Cham. https://doi.org/10.1007/978-3-031-48781-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48781-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48780-4

  • Online ISBN: 978-3-031-48781-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics