Skip to main content

Exact Algorithm for Generating H-Cores in Simplified Lattice-Based Protein Model

  • Conference paper
  • First Online:
Advances in Optimization and Applications (OPTIMA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1913))

Included in the following conference series:

  • 102 Accesses

Abstract

Modeling protein folding, which is the process by which a protein obtains its spacial shape, still remains a challenging problem. Protein geometry might be simplified by using the coarse-grained models. The highest level of simplification is achieved in HP-models where only polarity of amino acid residues is considered, and the unified monomers are located in nodes of some discrete lattice. One possible way of predicting the spacial structure of a protein in this model implies creating a maximally dense hydrophobic core (H-core), and fitting a protein into it afterwards. The paper proposes setups of Linear Programming (LP) problems for constructing both maximally dense H-cores and H-cores with the predefined number of contacts. Setups are developed for two lattices – Pseudo-triangular and Face-Centered Cubic. Results of the conducted experiments show that the proposed methodology is efficient enough to be utilized in the protein structure prediction process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Scott, R.A., Scheraga, H.A.: Conformational analysis of macromolecules. III. Helical structures of polyglycine and poly-L-alanine. J. Chem. Phys. 45(6), 2091–2101 (1966)

    Google Scholar 

  2. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Article  Google Scholar 

  3. Pardalos, P.M., Shalloway, D., Xue, G.: Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding: Molecular Conformation and Protein Folding: DIMACS Workshop, vol. 23, 20–21 March 1995 (1996)

    Google Scholar 

  4. Levitt, M.: A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104(1), 59–107 (1976)

    Article  MathSciNet  Google Scholar 

  5. Koliński, A.: Protein modeling and structure prediction with a reduced representation. Acta Biochimica Polonica 51 (2004)

    Google Scholar 

  6. Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A.E., Kolinski, A.: Coarse-grained protein models and their applications. Chem. Rev. 116(14), 7898–7936 (2016)

    Article  Google Scholar 

  7. Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22(10), 3986–3997 (1989)

    Article  Google Scholar 

  8. Munson, M., et al.: What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Protein Sci. 5(8), 1584–1593 (1996)

    Article  Google Scholar 

  9. Mann, M., Backofen, R.: Exact methods for lattice protein models. Bio-Algorithms Med.-Syst. 10(4), 213–225 (2014)

    Article  Google Scholar 

  10. Rashid, M.A., Hoque, M.T., Newton, M.A.H., Pham, D.N., Sattar, A.: A new genetic algorithm for simplified protein structure prediction. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS (LNAI), vol. 7691, pp. 107–119. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35101-3_10

    Chapter  Google Scholar 

  11. Nazmul, R., Chetty, M.: A knowledge-based initial population generation in memetic algorithm for protein structure prediction. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8227, pp. 546–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42042-9_68

    Chapter  Google Scholar 

  12. Nazmul, R., Chetty, M., Chowdhury, A.R.: An improved memetic approach for protein structure prediction incorporating maximal hydrophobic core estimation concept. Knowl.-Based Syst. 219, 104395 (2021)

    Article  Google Scholar 

  13. Will, S.: Constraint-based hydrophobic core construction for protein structure prediction in the face-centered-cubic lattice. In: Biocomputing 2002, pp. 661–672 (2001)

    Google Scholar 

  14. Irbäck, A., Sandelin, E.: Local interactions and protein folding: a model study on the square and triangular lattices. J. Chem. Phys. 108(5), 2245–2250 (1998)

    Article  Google Scholar 

  15. Dantzig, G.B.: Origins of the simplex method. In: A History of Scientific Computing, pp. 141–151 (1990)

    Google Scholar 

  16. Wilson, M.S., Landau, D.P.: Thermodynamics of hydrophobic-polar model proteins on the face-centered cubic lattice. Phys. Rev. E 104(2), 025303 (2021)

    Article  Google Scholar 

  17. Ignatov, A., Posypkin, M.: Techniques for speeding up H-core protein fitting. In: Olenev, N.N., Evtushenko, Y.G., Jaćimović, M., Khachay, M., Malkova, V. (eds.) OPTIMA 2021. LNCS, vol. 13078, pp. 336–350. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91059-4_24

    Chapter  Google Scholar 

  18. Böckenhauer, H.-J., Dayem Ullah, A.Z.M., Kapsokalivas, L., Steinhöfel, K.: A local move set for protein folding in triangular lattice models. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS, vol. 5251, pp. 369–381. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87361-7_31

    Chapter  Google Scholar 

  19. Wu, L.C., Kim, P.S.: A specific hydrophobic core in the \(\alpha \)-lactalbumin molten globule. J. Mol. Biol. 280(1), 175–182 (1998)

    Article  Google Scholar 

  20. PuLP: PyPI. (n.d.). https://pypi.org/project/PuLP/. Accessed 5 Aug 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Ignatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ignatov, A. (2024). Exact Algorithm for Generating H-Cores in Simplified Lattice-Based Protein Model. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Advances in Optimization and Applications. OPTIMA 2023. Communications in Computer and Information Science, vol 1913. Springer, Cham. https://doi.org/10.1007/978-3-031-48751-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48751-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48750-7

  • Online ISBN: 978-3-031-48751-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics