Skip to main content

Phased Arrays and BeamForming for MIMO and GNSS Applications

  • Conference paper
  • First Online:
Proceedings of SIE 2023 (SIE 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1113))

Included in the following conference series:

  • 281 Accesses

Abstract

Phased arrays are complex systems composed of multiple radiating elements that can be directed and changed electronically using beamforming algorithms. They have numerous applications in areas such as radar systems, navigation, wireless communications, and medicine, and are gaining more interest because of their versatility. One of the major difficulties of these systems is the complex management of calibration and synchronization of the radiating elements. We provide an introduction to these systems by analyzing the causes that generate channel time delay. The main resolution methods will be discussed, followed by an application example of beamforming to remove a jammer in a real GNSS signal. We also show how an uncalibrated system fails to function properly, unlike a calibrated one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fulton, C., Yeary, M., Thompson, D., Lake, J., Mitchell, A.: Digital phased arrays: challenges and opportunities. Proc. IEEE 104(3), 487–503 (2016)

    Article  Google Scholar 

  2. Mailloux, R.J.: Phased Array Antenna Handbook. Artech House (2017)

    Google Scholar 

  3. Steyskal, H.: Digital beamforming. In: 1988 18th European Microwave Conference, pp. 49–57. IEEE (1988)

    Google Scholar 

  4. Mucci, R.: A comparison of efficient beamforming algorithms. IEEE Trans. Acoust. Speech Sig. Process. 32(3), 548–558 (1984)

    Article  Google Scholar 

  5. Malek, N.A., Khalifa, O.O., Abidin, Z.Z., Mohamad, S.Y., Rahman, N.A.A.: Beam steering using the active element pattern of antenna array. TELKOMNIKA (Telecommun. Comput. Electron. Control) 16(4), 1542–1550 (2018)

    Article  Google Scholar 

  6. Li, F., Liu, H., Vaccaro, R.J.: Performance analysis for DOA estimation algorithms: unification, simplification, and observations. IEEE Trans. Aerosp. Electron. Syst. 29(4), 1170–1184 (1993)

    Article  Google Scholar 

  7. Eranti, P.K., Barkana, B.D.: An overview of direction-of-arrival estimation methods using adaptive directional time-frequency distributions. Electronics 11(9), 1321 (2022)

    Article  Google Scholar 

  8. Drenski, T., Rasmussen, J.C.: ADC & DAC-technology trends and steps to overcome current limitations. In: Optical Fiber Communication Conference, pp. M2C–1. Optica Publishing Group (2018)

    Google Scholar 

  9. Razavi, B.: Design considerations for interleaved ADCs. IEEE J. Solid-State Circuits 48(8), 1806–1817 (2013)

    Article  Google Scholar 

  10. Pan, H., Abidi, A.A.: Signal folding in A/D converters. IEEE Trans. Circuits Syst. I Regul. Pap. 51(1), 3–14 (2004)

    Article  MATH  Google Scholar 

  11. Ulversoy, T.: Software defined radio: challenges and opportunities. IEEE Commun. Surv. Tutor. 12(4), 531–550 (2010)

    Article  Google Scholar 

  12. Sadiku, M.N., Akujuobi, C.M.: Software-defined radio: a brief overview. IEEE Potentials 23(4), 14–15 (2004)

    Article  Google Scholar 

  13. Canese, L., Cardarilli, G., Di Nunzio, L., Fazzolari, R., Giardino, D., Re, M., Spanò, S.: Efficient digital implementation of a multirate-based variable fractional delay filter for wideband beamforming. IEEE Trans. Circuits Syst. II Express Briefs (2023)

    Google Scholar 

  14. Giuliano, R.: The next generation network in 2030: applications, services, and enabling technologies. In: 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), pp. 294–298. IEEE (2021)

    Google Scholar 

  15. Giardino, D., et al.: M-PSK demodulator with joint carrier and timing recovery. IEEE Trans. Circuits Syst. II Express Briefs 68(6), 1912–1916 (2020)

    Google Scholar 

  16. Mazzenga, F., Giuliano, R., Neri, A., Rispoli, F.: Integrated public mobile radio networks/satellite for future railway communications. IEEE Wirel. Commun. 24(2), 90–97 (2016)

    Article  Google Scholar 

  17. Cardarilli, G.C., et al.: An FPGA-based multi-agent reinforcement learning timing synchronizer. Comput. Electr. Eng. 99, 107749 (2022)

    Article  Google Scholar 

  18. Lu, L., Li, G.Y., Swindlehurst, A.L., Ashikhmin, A., Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Sig. Process. 8(5), 742–758 (2014)

    Article  Google Scholar 

  19. Hassan, N., Fernando, X.: Massive MIMO wireless networks: an overview. Electronics 6(3), 63 (2017)

    Article  Google Scholar 

  20. Hassanien, A., Vorobyov, S.A.: Phased-MIMO radar: a tradeoff between phased-array and MIMO radars. IEEE Trans. Sig. Process. 58(6), 3137–3151 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. van Bezouwen, H., Feldle, H.P., Holpp, W.: Status and trends in AESA-based radar. In: 2010 IEEE MTT-S International Microwave Symposium, pp. 526–529. IEEE (2010)

    Google Scholar 

  22. Okuhara, M., Bryne, T.H., Gryte, K., Johansen, T.A.: Phased array radio navigation system on UAVs: GNSs-based calibration in the field. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 210–218. IEEE (2021)

    Google Scholar 

  23. He, Q.Q., Ding, S., Xing, C., Chen, J.Q., Yang, G.Q., Wang, B.Z.: Research on structurally integrated phased array for wireless communications. IEEE Access 8, 52359–52369 (2020)

    Article  Google Scholar 

  24. Fulton, C., Chappell, W.: Calibration techniques for digital phased arrays. In: 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, pp. 1–10. IEEE (2009)

    Google Scholar 

  25. Richards, M.: Fundamentals of Radar Signal Processing, 2nd edn. McGraw-Hill, New York (2014)

    Google Scholar 

  26. Richards, M.A., Scheer, J., Holm, W.A., Melvin, W.L.: Principles of Modern Radar (2010)

    Google Scholar 

  27. Peterson, Z.: Delay tuning for high speed signals: what you need to know (2023). https://resources.altium.com/p/delay-tuning-for-high-speed-signals-what-you-need-to-know. Accessed 01 Sept 2023

  28. Ye, H., Li, B., Huang, M., Liang, Z., Lu, Y.: A digital IQ imbalance self-calibration in FDD transceiver. In: 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–4. IEEE (2017)

    Google Scholar 

  29. Acar, E., Ozev, S.: Digital calibration of RF transceivers for IQ imbalances and nonlinearity. In: 2007 25th International Conference on Computer Design, pp. 512–517. IEEE (2007)

    Google Scholar 

  30. Sabah, S., Lorenz, R.: Design and calibration of IQ-mixers. In: EPAC, vol. 98, p. 1589 (1998)

    Google Scholar 

  31. Chen, S.J., Hsieh, Y.H.: IQ Calibration Techniques for CMOS Radio Transceivers. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-5083-6

    Book  Google Scholar 

  32. Shafiee, H., Fouladifard, S.: Calibration of IQ imbalance in OFDM transceivers. In: IEEE International Conference on Communications, ICC’03, vol. 3, pp. 2081–2085. IEEE (2003)

    Google Scholar 

  33. Sun, P., Tang, J., Wan, S., Zhang, N.: Identifiability analysis of local oscillator phase self-calibration based on hybrid Cramér-Rao bound in MIMO radar. IEEE Trans. Sig. Process. 62(22), 6016–6031 (2014)

    Article  MATH  Google Scholar 

  34. Analog Devices, Inc.: AD-FMCOMMS5-EBZ User Guide (2023). https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms5-ebz. Accessed 01 Sept 2023

  35. Analog Devices, Inc.: AD9361, AD9364 and AD9363 (2023). https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/ad9361. Accessed 01 Sept 2023

  36. Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS-Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More. Springer, Vienna (2007). https://doi.org/10.1007/978-3-211-73017-1

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Advanced Micro Devices, Inc. (AMD) for providing the FPGA hardware and software tools with the AMD-Xilinx University Program.

This work is partially supported by Project ECS 0000024 Rome Technopole, CUP B83C22002820006, NRP Mission 4 Component 2 Investment 1.5, funded by the European Union - NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Spanò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Acciarito, S. et al. (2024). Phased Arrays and BeamForming for MIMO and GNSS Applications. In: Ciofi, C., Limiti, E. (eds) Proceedings of SIE 2023. SIE 2023. Lecture Notes in Electrical Engineering, vol 1113. Springer, Cham. https://doi.org/10.1007/978-3-031-48711-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48711-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48710-1

  • Online ISBN: 978-3-031-48711-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics