Skip to main content

Quantifying the Conversion Efficiency of a MW Plasma Reactor by Orienting a Vortex Gas Followed by a Downstream CDN Nozzle for Syngas Generation

  • Chapter
  • First Online:
Collaborative Research Advancing Engineering Solutions for Real-World Challenges

Part of the book series: Proceedings in Technology Transfer ((PTT))

  • 71 Accesses

Abstract

Power-to-gas is a storage technology that uses excess electricity from renewable energy sources for chemical synthesis. In this research project the power-to-gas process of microwave plasmalysis, which is in focus, is first introduced and a short theoretical background of the technology is explained. Then the existing laboratory equipment of the plasma setup and the research context is discussed. Finally the research project is defined and presented. The research project includes the design and optimization of a vortex gas and a downstream quench step in the post plasma zone through a CDN nozzle. The interaction of both flow effects is also be analyzed and investigated. The research will be carried out simulatively and experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ono, S., Teii, S., Suzuki, Y., Suganuma, T.: Effect of gas composition on metal surface cleaning using atmospheric pressure microwave plasma. Thin Solid Films 518, 981–986 (2009)

    Article  Google Scholar 

  2. Shin, D.H., Bang, C.U., Kim, J.H., Han, K.H., Hong, Y.C.: Modification of metal surfaces by microwave plasma at atmospheric pressure. Surf. Coat. Tech. 201, 4939–4942 (2006)

    Article  Google Scholar 

  3. McAdam, R.: Prospects for non-thermal atmospheric plasmas for pollution abatement. J. Phys. D Appl. Phys. 34, 2810–2821 (2001)

    Article  Google Scholar 

  4. Mizuno, A.: Industrial applications of atmospheric non-thermal plasma in environmental remediation. Plasma Phys. Control Fusion 49, A1–A15 (2007)

    Article  Google Scholar 

  5. Jiang, B., et al.: Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 236, 348–368 (2014)

    Article  Google Scholar 

  6. Herberlein, J., Murphy, A. B.: Thermal plasma waste treatment, J. Phys. D: Appl. Phys. 41 (2007)

    Google Scholar 

  7. Bogaerts, A., Centi, G.: Plasma technology for CO2 Conversion: A personal perspective on prospects and gaps. Front. Energy Res. 8, Article 111 (2020)

    Google Scholar 

  8. Snoeckx, R., Bogaerts, A.: Plasma technology—a novel solution for CO2 conversion?. Chem. Soc. Rev. 46 (2017)

    Google Scholar 

  9. Silva, T., Britun, N., Godfroid, T., Synders, R.: Study of CO2 decomposition in microwave discharges by optical diagnostic methods, ISBN 978–953–51–2280–7 (2016)

    Google Scholar 

  10. Fridman, A.: Plasma chemistry, ISBN-13 978–0–521–84735–3 (2018)

    Google Scholar 

  11. Britun, N., Silva, T.: Plasma Chemistry and Gas Conversion, 978–1–78984–840–3 (2018)

    Google Scholar 

  12. Bundaleska, N., Tsyganov, D., Saavedra, R., Tatarova, E., Dias, F.M., Ferreira, C.M.: Hydrogen production from methanol reforming in microwave “tornado”-type plasma. Int. J. Hydrog. Energy. 38:22 (2013)

    Google Scholar 

  13. Marcantonio, V., De Falco, M., Bocci, E.: Non-Thermal plasma technology for CO2 Conversion—An overview of the most relevant experimental results and kinetic models, Energies 15 (2022)

    Google Scholar 

  14. Mercer, EE.R., Van Alphen, S., van Deursen, C.F.A.M., Righart, T.W.H., Bongers, W., Snyders, R., Bogaerts, A., van de Sanden, M.C.M., Peeters, F.J.J.: Post-plasma quenching to improve conversion and energy efficiency in a CO2 microwave plasma, Fuel 334 (2022)

    Google Scholar 

  15. Mohsenian, S., Sheth, S., Bhatta, S., Nagassou, D., Sullivan, D., Trelles, J.P.: Design and characterization of an electromagnetic-resonant cavity microwave plasma reactor for atmospheric pressure carbon dioxide decomposition (2019)

    Google Scholar 

  16. Belov, I., Vermeiren, V., Paulussen, S., Bogaerts, A.: Carbon dioxide dissociation in a microw ave plasma reactor operating in a wide pressure, J. CO2 Util. 24, Pages 386–397 (2018)

    Google Scholar 

  17. Wolf, A.J., Peeters, F.J.J., Groen, P.W.C., Bongers, W.A., van de Sanden, M.C.M.: CO2 conversion in Non-Uniform discharges: Disentangling dissociation and recombination mechanisms,. J. Phys. Chem. C., 16806–16819 (2020)

    Google Scholar 

  18. Bongers, W., Bouwmeester, H., Wolf, B., Peeters, F., Welzel, S., van den Bekerom, D., den Harder, N., Goede, A., Graswinckel, M., Groen, P., Kopecki, J., Leins, M., van Rooij, G., Schulz, A., Walker, M., van de Sanden, R.: Plasma-driven dissociation of CO2 for fuel synthesis, Process Polym. (2017)

    Google Scholar 

  19. Bromberg, L.: CFD modeling of plasmatron methane reformer (2005)

    Google Scholar 

  20. M. Y. Ong, S. Nomanbhay, F. Kusumo, P.L. Show, Application of microwave plasma technology to convert carbon dioxide (CO2) into high value products: A review, J. Clean. Prod. 336 (2022)

    Google Scholar 

  21. Jasinski, M., Dors, M., Nowakoska, H., Nichipor, G., Mizeraczyk, J.: Production of hydrogen via conversion of hydrocarbons using a microwave plasma, J. Phys. D: Appl. Phys. 44 (2011)

    Google Scholar 

  22. Berthelot, A., Bogaerts, A.: Modeling of CO2 splitting in a microwave plasma: how to improve the conversion and energy efficienc, J. Phys. Chem. C., 8236–8251 (2017)

    Google Scholar 

  23. Sundstrom, D.W., DeMichiell, R.L.: Quenching processes for high temperature chemical reactions, Ind. Eng. Chem. Process Des. Develop., 10(1) (1971)

    Google Scholar 

  24. Yang, T., Shen, J., Ran, T., Li, J., Chen, P., Yin, Y.: Understanding CO2 decompostion by thermal plasma with supersonic expansion quench, Plasma Sci. Technol. 20 (2018)

    Google Scholar 

  25. Vermeiren, V., Bogaerts, A.: Supersonic microwave plasma: potential and limitations for energy-efficient CO2 conversion, J. Phys. Chem. C., 25869–25881 (2018)

    Google Scholar 

  26. Wolf, A., Righart, T., Peeters, F., Bongers, W., van de Sanden, M.: Implications of thermo-chemical instability on the contracted modes in CO2 microwave plasmas (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Hasenjäger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasenjäger, T., Czarnetzki, W. (2024). Quantifying the Conversion Efficiency of a MW Plasma Reactor by Orienting a Vortex Gas Followed by a Downstream CDN Nozzle for Syngas Generation. In: Öchsner, A. (eds) Collaborative Research Advancing Engineering Solutions for Real-World Challenges. Proceedings in Technology Transfer. Springer, Cham. https://doi.org/10.1007/978-3-031-48521-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48521-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48520-6

  • Online ISBN: 978-3-031-48521-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics