Skip to main content

Concept for a Systematic Setup of a Hot Gas Welding Process for Glasfiber Reinforced Polyamides

  • Chapter
  • First Online:
Collaborative Research Advancing Engineering Solutions for Real-World Challenges

Abstract

Hot gas welding is a joining process that melts the thermoplastic polymer without contact by convection heating and has been increasingly investigated and developed in recent years. The reason is the absence of the formation of particles during the heating process of the polymer, e.g. in friction welding or the adhesion of polymer melt in hot plate welding. Another advantage is also the free design of the weld seam. In contrast to the usual welding processes such as ultrasonic or vibration welding, three-dimensional weld seams can be produced comparatively easily. With data from welding tests with a production-capable hot gas welding system and different polyamides (PA6-GF40, PA66-GF35 and PA6T/XT-GF35) the influence of various process parameters is analyzed. Systematic investigations allow statements to be made on the correlation between the individual process parameters like heating time, temperature of the hot gas welding tool and temperature of the polymer. Furthermore, a procedure for the systematic adjustment of the hot gas welding process is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rattke, M., Natrop, J.: Infrared heating in plastics welding technology. Joining Plast. 1, 58–63 (2007)

    Google Scholar 

  2. Gehde, M., Friedrich, S., Motshev, S.: Radiant heating during plastics welding with infrared radiation. Joining Plast. 2, 58–63 (2008)

    Google Scholar 

  3. Fuhrich, R., Gehde, M., Friedrich, S.: Process temperature measurement in infrared welding. Joining Plast. 5, 34–39 (2011)

    Google Scholar 

  4. Fuhrich, R., Gehde, M., Friedrich, S.: Mechanical properties of infrared-welded joints. Joining Plast. 5, 216–221 (2011)

    Google Scholar 

  5. Fuhrich, R., Gehde, M.: Contour-following infrared radiator for the welding of plastics with high time and energy efficiencies. Joining Plast. 8, 204–211 (2014)

    Google Scholar 

  6. Klein, H.M.: Laserschweißen von Kunststoffen in der Mikrotechnik. Dissertation, RWTH Aachen (2001)

    Google Scholar 

  7. Schulz, J.E.: Werkstoff-, Prozess- und Bauteiluntersuchungen zum Laserdurchstrahlschweißen von Kunststoffen, Dissertation, RWTH Aachen (2002)

    Google Scholar 

  8. Mochev, S., Endemann, U.M.: Mehr als nur heiße Luft. Systematische Prozesoptimierung für das Heißgasschweißen. Kunststoffe 10, 76–79 (2016)

    Google Scholar 

  9. Tschech, T.: Heißgasschweißen in der Serienfertigung. Presentation (2017)

    Google Scholar 

  10. Mochev, S., Endemann, U.M.: Faster and better welding: tools adaption reduces process times and improves weld quality. Kunststoffe Intern. 9, 57–59 (2018)

    Google Scholar 

  11. Albrecht, M., Bialaschik, M.O., Gehde, M. et al.: Hot gas welding—Influences of the tool design. AIP Conference Proceedings 2289.020006 (2020). https://doi.org/10.1063/5.0029478

  12. Albrecht, M., Bialaschik, M., Gehde, M., et al.: Hot gas butt welding of plastic. Joining Plast. 15, 162–169 (2021)

    Google Scholar 

  13. Schmid, J., Weißer, D.F., Mayer, D., et al.: Reduction of the heating time for hot gas welding. Reduktion der Erwärmungszeit beim Heißgasschweißen. Kunststofftechnik 17, 112–128 (2021)

    Article  Google Scholar 

  14. Schmid, J., Weißer, D.F., Maye, D., et al.: Heißgasschweißen in der Komfortzone. Neuartige Düsengeneration eröffnet vielfältige Möglichkeiten. Kunststoffe 50, 80–82 (2021)

    Google Scholar 

  15. Schmid, J., Weißer, D.F., Mayer, D., et al.: Reduktion der Erwärmungszeit beim Heißgas-schweißen. Technomer 2021 - 27. Fachtagung über Verarbeitung und Anwendung von Poly-meren, Chemnitz (2021)

    Google Scholar 

  16. Schmid, J., Weißer, D.F., Mayer, D., et al.: Increase of the efficiency in hot gas welding by optimization of the gas flow. Technol. Lightw. Struct. 5, 32–40 (2022)

    Google Scholar 

  17. Schmid, J., Weißer, D.F., Mayer, D., et al.: Analysis of two different nozzle systems for hot gas welding using CFD simulations and measurement results. Kunststofftechnik 18, 117–145 (2022)

    Article  Google Scholar 

  18. Schmid, J., Weißer, D.F., Mayer, D., et al.: CFD analysis of hot gas welding of 3D weld contours using two different nozzle systems. Advanced Structured Materials. Volume 153. Springer Nature Switzerland AG (2022)

    Google Scholar 

  19. Schmid, J., Weißer, D.F., Mayer, D., et al.: Influences of the inclination angle of the weld on the heating behaviour and its strength in the case of hot gas welding. Joining Plast. 17, 90–97 (2023)

    Google Scholar 

  20. Schlarb, A.K.H.: Zum Vibrationsschweissen von Polymerwerkstoffen. Prozess - Struktur - Eigenschaften. Dissertation, Universität Kassel (1989)

    Google Scholar 

  21. Friedrich, S.: Lineares Vibrationsschweißen von Kunststoffen im industriellen Umfeld. Ein-flüsse und Restriktionen. Dissertation, Technische Universität Chemnitz (2014)

    Google Scholar 

  22. Rattke, M., Natrop, J.: Newly developed convection welding process on a natural gas basis. Joining Plast. 2, 129–133 (2008)

    Google Scholar 

  23. Barkhoff, R., Happel, J.: Quadralux: Hybrid heating procedure for the welding of plastics. Joining Plast. 13, 161 (2019)

    Google Scholar 

  24. Potente, H., Schöppner, V., Hoffschlag, R.: Investigations into the melt adhesion during heated tool welding. Joining Plast. 4, 102–107 (2010)

    Google Scholar 

  25. Belmann, A.: Reducing contaminations during the joining of plastics. Joining Plast. 11, 34–41 (2017)

    Google Scholar 

  26. Egen, U.: Gefügestruktur in Heizelementschweißnähten an Polypropylen-Rohren. Universität Kassel, Disserta-tion (1985)

    Google Scholar 

  27. Kreiter, J.: Optimierung der Schweißnahtfestigkeit von Heizelementstumpfschweißungen von Formteilen durch verbesserte Prozessführung und Selbsteinstellung. Dissertation, Universität Paderborn (1987)

    Google Scholar 

  28. Bonten, C.: Beitrag zur Erklärung des Wirkmechanismus in Schweissverbindungen aus teil-kristallinen Thermoplasten. Dissertation, Universität Gesamthochschule Essen (1998)

    Google Scholar 

  29. Tüchert, C.: Einfluss der inneren Eigenschaften von Schweißverbindungen auf die langzeitige Schweißnahtgüte. Dissertation, RWTH Aachen (2005)

    Google Scholar 

  30. Potente, H., Schöppner, V., Hoffschlag, R., et al.: Saving cycly time by means of intensive cooling during heated tool welding. Joining Plast. 2, 50–56 (2008)

    Google Scholar 

  31. Friedrich, N., Schöppner, V.: Reducing the cycle time in heated tool welding without any loss in quality as a result of forced cooling using compressed air. Joining Plast. 6, 134–141 (2012)

    Google Scholar 

  32. Baudrit, B., Schmitt, M., Kressirer, S., et al.: Energy efficiency during heated tool welding. Joining Plast. 8, 197–203 (2014)

    Google Scholar 

  33. Schmid, J., Weißer, D.F., Mayer, D., et al.: Analysis of the Heating Behavior and the Strength of Hot Gas Welded Polyamides with 3D Contours Using an Immersing Nozzle System. Advanced Structured Materials. Volume NN. Springer Nature Switzerland AG (2023)

    Google Scholar 

  34. Schmid, J.: Beitrag zum effizienten Heißgasschweißen von thermoplastischen Kunststoffen, Dissertation, TU Chemnitz (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmid, J., Heienbrock, S., Mayer, D., Weißer, D.F., Deckert, M. (2024). Concept for a Systematic Setup of a Hot Gas Welding Process for Glasfiber Reinforced Polyamides. In: Öchsner, A. (eds) Collaborative Research Advancing Engineering Solutions for Real-World Challenges. Proceedings in Technology Transfer. Springer, Cham. https://doi.org/10.1007/978-3-031-48521-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48521-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48520-6

  • Online ISBN: 978-3-031-48521-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics