Skip to main content

How to Extract Radiomic Features from Imaging

  • Chapter
  • First Online:
Basics of Image Processing

Abstract

Radiomics analysis has been widely applied in cancer research and has demonstrated its potential to improve patient care. The process of radiomics analysis involves several steps, starting with image acquisition and preprocessing, followed by segmentation. Radiomics features are then extracted, which include shape, intensity, texture, and statistical measures, among others. These features are then subjected to machine learning algorithms to identify patterns and relationships between features and clinical endpoints. In addition to radiomics features, other features such as deep features or other imaging biomarkers can be extracted from the image. Standardization emerges as a crucial aspect in radiomics analysis, ensuring consistency and reproducibility. The Imaging Biomarkers Standardization Initiative (IBSI) provides guidelines for radiomics feature extraction.

Deep learning models have emerged as a promising alternative to feature-based models. These models learn features automatically, which can help overcome the limitations of feature-based models that are sensitive to inter-scanner and inter-protocol variability.

Radiomics is a rapidly growing field that has the potential to transform medical imaging and improve patient outcomes. By providing quantitative information on tissue structure and function, radiomics analysis can help clinicians make more informed treatment decisions and develop personalized treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chetan MR, Gleeson FV (2021) Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives. Eur Radiol 31(2):1049–1058. https://doi.org/10.1007/s00330-020-07141-9. Epub 2020 Aug 18. PMID: 32809167; PMCID: PMC7813733

  2. Du P, Liu X, Shen L, Wu X, Chen J, Chen L, Cao A, Geng D (2023) Prediction of treatment response in patients with brain metastasis receiving stereotactic radiosurgery based on pre-treatment multimodal MRI radiomics and clinical risk factors: A machine learning model. Front Oncol 13:1114194. https://doi.org/10.3389/fonc.2023.1114194. PMID: 36994193; PMCID: PMC10040663

  3. Huynh LM, Hwang Y, Taylor O, Baine MJ (2023) The use of MRI-derived radiomic models in prostate cancer risk stratification: a critical review of contemporary literature. Diagnostics (Basel) 13(6):1128. 13(6):1128. https://doi.org/10.3390/diagnostics13061128. PMID: 36980436; PMCID: PMC10047271

  4. Zhang Y, Yang Y, Ning G, Wu X, Yang G, Li Y (2023) Contrast computed tomography-based radiomics is correlation with COG risk stratification of neuroblastoma. Abdom Radiol (NY) https://doi.org/10.1007/s00261-023-03875-4. Epub ahead of print. PMID: 36951989

  5. Cui Y, Li Z, Xiang M, Han D, Yin Y, Ma C (2022) Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures. Radiat Oncol. 17(1):212. https://doi.org/10.1186/s13014-022-02186-0. PMID: 36575480; PMCID: PMC9795769

  6. Chu F, Liu Y, Liu Q, Li W, Jia Z, Wang C, Wang Z, Lu S, Li P, Zhang Y, Liao Y, Xu M, Yao X, Wang S, Liu C, Zhang H, Wang S, Yan X, Kamel IR, Sun H, Yang G, Zhang Y, Qu J (2022) Development and validation of MRI-based radiomics signatures models for prediction of disease-free survival and overall survival in patients with esophageal squamous cell carcinoma. Eur Radiol. 32(9):5930–5942. https://doi.org/10.1007/s00330-022-08776-6. Epub 2022 Apr 6. PMID: 35384460

  7. Chen W, Qiao X, Yin S, Zhang X, Xu X (2022) Integrating Radiomics with Genomics for Non-Small Cell Lung Cancer Survival Analysis. J Oncol. 2022:5131170. https://doi.org/10.1155/2022/5131170. PMID: 36065309; PMCID: PMC9440821

  8. Feng Q, Ding Z (2020) MRI Radiomics Classification and Prediction in Alzheimer’s Disease and Mild Cognitive Impairment: A Review. Curr Alzheimer Res. 17(3):297–309. https://doi.org/10.2174/1567205017666200303105016. PMID: 32124697

  9. Pujadas ER, Raisi-Estabragh Z, Szabo L, McCracken C, Morcillo CI, Campello VM, Martín-Isla C, Atehortua AM, Vago H, Merkely B, Maurovich-Horvat P, Harvey NC, Neubauer S, Petersen SE, Lekadir K 2022 Prediction of incident cardiovascular events using machine learning and CMR radiomics. Eur Radiol https://doi.org/10.1007/s00330-022-09323-z. Epub ahead of print. PMID: 36512045

  10. Gabryś HS, Gote-Schniering J, Brunner M, Bogowicz M, Blüthgen C, Frauenfelder T, Guckenberger M, Maurer B, Tanadini-Lang S 2022 Transferability of radiomic signatures from experimental to human interstitial lung disease. Front Med (Lausanne). 9:988927. https://doi.org/10.3389/fmed.2022.988927. PMID: 36465941; PMCID: PMC9712180

  11. Cho YH, Seo JB, Lee SM, Kim N, Yun J, Hwang JE, Lee JS, Oh YM, Do Lee S, Loh LC, Ong CK (2021) Radiomics approach for survival prediction in chronic obstructive pulmonary disease. Eur Radiol 31(10):7316–7324. https://doi.org/10.1007/s00330-021-07747-7. Epub 2021 Apr 13. PMID: 33847809.

    Article  PubMed  Google Scholar 

  12. Martí-Bonmatí Luis and Alberich-Bayarri, A (2018) Imaging biomarkers development and clinical integration. Cham: springer international publishing.

    Google Scholar 

  13. Jha AK, Mithun S, Jaiswar V, Sherkhane UB, Purandare NC, Prabhash K, Rangarajan V, Dekker A, Wee L, Traverso A (2021) Repeatability and reproducibility study of radiomic features on a phantom and human cohort. Sci Rep 11(1):2055. https://doi.org/10.1038/s41598-021-81. 526–8. PMID: 33479392; PMCID: PMC7820018.

  14. Liu R, Elhalawani H, Radwan Mohamed AS, Elgohari B, Court L, Zhu H, Fuller CD (2019) Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer. Clin transl radiat oncol. 21:11–18. https://doi.org/10.1016/j.ctro.2019.11.005. PMID: 31886423; PMCID: PMC6920497.

  15. Leithner D, Schöder H, Haug A, Vargas HA, Gibbs P, Häggström I, Rausch I, Weber M, Becker AS, Schwartz J, Mayerhoefer ME (2022) impact of combat harmonization on pet radiomics-based tissue classification: a dual-cen2ter PET/MRI and PET/CT Study. J Nucl Med. 63(10):1611–1616. https://doi.org/10.2967/jnumed.121.263102. Epub 2022 Feb 24. PMID: 35210300; PMCID: PMC9536705.

  16. Cabini RF, Brero F, Lancia A, Stelitano C, Oneta O, Ballante E, Puppo E, Mariani M, Alì E, Bartolomeo V, Montesano M, Merizzoli E, Aluia D, Agustoni F, Stella GM, Sun R, Bianchini L, Deutsch E, Figini S, Bortolotto C, Preda L, Lascialfari A, Filippi AR (2022). Preliminary report on harmonization of features extraction process using the ComBat tool in the multi-center “Blue Sky Radiomics” study on stage III unresectable NSCLC. Insights Imaging 13(1):38. https://doi.org/10.1186/s13244-022-01171-1. PMID: 35254525; PMCID: PMC8901939

  17. Zeineldin RA, Karar ME, Elshaer Z, Coburger J, Wirtz CR, Burgert O, Mathis-Ullrich F (2022) Explainability of deep neural networks for MRI analysis of brain tumors. Int J Comput Assist Radiol Surg 17(9):1673–1683. https://doi.org/10.1007/s11548-022-02619-x. Epub 2022 Apr 23. PMID: 35460019; PMCID: PMC9463287.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zerunian M, Pucciarelli F, Caruso D, Polici M, Masci B, Guido G, De Santis D, Polverari D, Principessa D, Benvenga A, Iannicelli E, Laghi A (2022) Artificial intelligence based image quality enhancement in liver MRI: a quantitative and qualitative evaluation. Radiol Med 127(10):1098–1105. https://doi.org/10.1007/s11547-022-01539-9. Epub 2022 Sep 7. PMID: 36070066; PMCID: PMC9512724

  19. Tixier F, Jaouen V, Hognon C, Gallinato O, Colin T, Visvikis D (2021) Evaluation of conventional and deep learning based image harmonization methods in radiomics studies. Phys Med Biol 66(24). https://doi.org/10.1088/1361-6560/ac39e5. PMID: 34781280

  20. Shafiq-Ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin D, Court LE, Gillies RJ, Moros EG (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys 44(3):1050–1062. https://doi.org/10.1002/mp.12123. PMID: 28112418; PMCID: PMC5462462

  21. Covert EC, Fitzpatrick K, Mikell J, Kaza RK, Millet JD, Barkmeier D, Gemmete J, Christensen J, Schipper MJ, Dewaraja YK (2022) Intra- and inter-operator variability in MRI-based manual segmentation of HCC lesions and its impact on dosimetry. EJNMMI Phys 9(1):90. https://doi.org/10.1186/s40658-022-00515-6. PMID: 36542239; PMCID: PMC9772368

  22. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit MC, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk LV, van Griethuysen J, van Velden FHP, Whybra P, Richter C, Löck S (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338. https://doi.org/10.1148/radiol.2020191145. Epub 2020 Mar 10. PMID: 32154773; PMCID: PMC7193906

  23. Li W (2015) “Automatic segmentation of liver tumor in CT images with deep convolutional neural networks”. J Comput Commun 3(11):146

    Google Scholar 

  24. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y et al (2014) “The multimodal brain tumor image segmentation benchmark (BRATS)”. IEEE Trans Med Imaging 34(10):1993–2024

    Google Scholar 

  25. Wang S, Zhou M, Liu Z, Liu Z, Gu D, Zang Y, Dong D, Gevaert O, Tian J (2017) “Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation”. Med Image Anal 40:172–183

    Google Scholar 

  26. Huynh BQ, Li H, Giger ML (2016) Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging 3(3):034501

    Google Scholar 

  27. Paul R et al (2016) Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography 2(4):388–395

    Google Scholar 

  28. Summers RM, Johnson CD, Pusanik LM, Malley JD, Youssef, AM, Reed JE (2001) Automated polyp detection at CT colonography: feasibility assessment in a human population. Radiology 219(1):51–59

    Google Scholar 

  29. Wang Y, Sun L, Ma K, Fang J (2018) Breast cancer microscope image classification based on CNN with image deformation. In Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal 27–29;2018. Proceedings 15 (pp. 845–852). Springer International Publishing

    Google Scholar 

  30. Dehmeshki J, Amin H, Valdivieso M, Ye X (2008) Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE transactions on medical imaging 27(4):467–480.

    Google Scholar 

  31. Szegedy C et al (2015) Going deeper with convolutions. En Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1–9

    Google Scholar 

  32. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

    Google Scholar 

  33. He K et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 770–778

    Google Scholar 

  34. Zhu Y et al (2019) A deep learning radiomics model for preoperative grading in meningioma. Eur J Radiol 116:128–134

    Google Scholar 

  35. Zheng X et al (2020) Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun 11:1–9

    Google Scholar 

  36. Afshar P et al (2019) From handcrafted to deep-learning-based cancer radiomics: challenges and opportunities. IEEE Signal Process Mag 36(4):132–160

    Google Scholar 

  37. Echaniz O, Graña M (2017) Ongoing work on deep learning for lung cancer prediction. In: Biomedical applications based on natural and artificial computing: international work-conference on the interplay between natural and artificial computation, IWINAC 2017, Corunna, Spain, June 19–23, 2017, Proceedings, Part II. Springer International Publishing, pp 42–48

    Google Scholar 

  38. Fu L et al (2017) Automatic detection of lung nodules: false positive reduction using convolution neural networks and handcrafted features. In: Medical imaging 2017: computer-aided diagnosis. SPIE, pp 60–67

    Google Scholar 

  39. Hassan AH, Wahed ME, Metwally MS, Atiea MA (2022) A hybrid approach for classification breast cancer histopathology images. Frontiers in scientific research and technology 3(1):1–10

    Google Scholar 

  40. Liu S et al (2017) Pulmonary nodule classification in lung cancer screening with three-dimensional convolutional neural networks. J Med Imaging 4(4):041308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jimenez-Pastor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jimenez-Pastor, A., Urbanos-García, G. (2023). How to Extract Radiomic Features from Imaging. In: Alberich-Bayarri, Á., Bellvís-Bataller, F. (eds) Basics of Image Processing. Imaging Informatics for Healthcare Professionals. Springer, Cham. https://doi.org/10.1007/978-3-031-48446-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48446-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48445-2

  • Online ISBN: 978-3-031-48446-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics