Skip to main content

Self-supervised Deep-Learning Segmentation of Corneal Endothelium Specular Microscopy Images

  • Conference paper
  • First Online:
Applications of Computational Intelligence (ColCACI 2023)

Abstract

Computerized medical evaluation of the corneal endothelium is challenging because it requires costly equipment and specialized personnel, not to mention that conventional techniques require manual annotations that are difficult to acquire. This study aims to obtain reliable segmentations without requiring large data sets labeled by expert personnel. To address this problem, we use the Barlow Twins approach to pre-train the encoder of a UNet model in an unsupervised manner. Then, with few labeled data, we train the segmentation. Encouraging results show that it is possible to address the challenge of limited data availability using self-supervised learning. This model achieved a precision of 86%, obtaining a satisfactory performance. Using many images to learn good representations and a few labeled images to learn the semantic segmentation task is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeang, L.J., Margo, C.E., Espana, E.M.: Diseases of the corneal endothelium. Exp. Eye Res. 205, 108495 (2021)

    Article  Google Scholar 

  2. Catala, P., et al.: Approaches for corneal endothelium regenerative medicine. Prog. Retin. Eye Res. 87, 100987 (2022)

    Article  Google Scholar 

  3. Sierra, J.S., et al.: Corneal endothelium assessment in specular microscopy images with Fuchs’ dystrophy via deep regression of signed distance maps. Biomed. Opt. Express 14(1), 335–351 (2023)

    Article  Google Scholar 

  4. Knauer, C., Pfeiffer, N.: The value of vision. Graefes Arch. Clin. Exp. Ophthalmol. 246, 477–482 (2008)

    Article  Google Scholar 

  5. Huang, J., Maram, J., Tepelus, T.C., Sadda, S.R., Chopra, V., Lee, O.L.: Comparison of noncontact specular and confocal microscopy for evaluation of corneal endothelium. Eye Contact Lens Sci. Clin. Pract. 44, 144–150 (2017)

    Article  Google Scholar 

  6. Price, M.O., Fairchild, K.M., Price, F.W.: Comparison of manual and automated endothelial cell density analysis in normal eyes and DSEK eyes. Cornea 32(5), 567–573 (2013). https://doi.org/10.1097/ico.0b013e31825de8fa

    Article  Google Scholar 

  7. Luft, N., Hirnschall, N., Schuschitz, S., Draschl, P., Findl, O.: Comparison of 4 specular microscopes in healthy eyes and eyes with cornea guttata or corneal grafts. Cornea 34(4), 381–386 (2015). https://doi.org/10.1097/ico.0000000000000385

    Article  Google Scholar 

  8. Gasser, L., Reinhard, T., Böhringer, D.: Comparison of corneal endothelial cell measurements by two non-contact specular microscopes. BMC Ophthalmol. 15, 87 (2015). https://doi.org/10.1186/s12886-015-0068-1

    Article  Google Scholar 

  9. Piórkowski, A., Gronkowska–Serafin, J.: Towards precise segmentation of corneal endothelial cells. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 240–249. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16483-0_25

    Chapter  Google Scholar 

  10. Selig, B., Vermeer, K., Rieger, B., Hillenaar, T., Luengo Hendriks, C.: Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy. BMC Med. Imaging 15, 13 (2015). https://doi.org/10.1186/s12880-015-0054-3

    Article  Google Scholar 

  11. Shilpashree, P., Kaggere, S., Sudhir, R., Srinivas, S.: Automated image segmentation of the corneal endothelium in patients with Fuchs dystrophy. Transl. Vis. Sci. Technol. 10, 27 (2021). https://doi.org/10.1167/tvst.10.13.27

    Article  Google Scholar 

  12. Daniel, M., et al.: Automated segmentation of the corneal endothelium in a large set of ‘real-world’ specular microscopy images using the U-net architecture. Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-41034-2

  13. Vigueras-Guillén, J., et al.: DenseUNets with feedback non-local attention for the segmentation of specular microscopy images of the corneal endothelium with guttae. Sci. Rep. 12 (2022). https://doi.org/10.1038/s41598-022-18180-1

  14. Caron, M., et al.: Emerging Properties in Self-supervised Vision Transformers (2021)

    Google Scholar 

  15. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  16. Punn, N.S., Agarwal, S.: BT-Unet: a self-supervised learning framework for biomedical image segmentation using Barlow twins with U-net models. Mach. Learn. 111(12), 4585–4600 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiao, R., Zhang, Y., Ding, L., Cai, R., Zhang, J.: Learning with Limited Annotations: A Survey on Deep Semi-supervised Learning for Medical Image Segmentation (2022)

    Google Scholar 

  18. Wu, Y., et al.: Mutual Consistency Learning for Semi-supervised Medical Image Segmentation (2022)

    Google Scholar 

  19. Fang, K., Li, W.-J.: DMNet: difference minimization network for semi-supervised segmentation in medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 532–541. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_52

    Chapter  Google Scholar 

  20. Chen, S., Bortsova, G., Juarez, A.G.-U., Tulder, G., Bruijne, M.: Multi-task Attention-Based Semi-supervised Learning for Medical Image Segmentation (2019)

    Google Scholar 

  21. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  22. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016). https://doi.org/10.1109/CVPR.2016.278

  23. Balestriero, R., LeCun, Y.: Contrastive and Non-contrastive Self-supervised Learning Recover Global and Local Spectral Embedding Methods (2022)

    Google Scholar 

  24. Grill, J.-B., et al.: Bootstrap your own latent: a new approach to self-supervised learning (2020)

    Google Scholar 

  25. Ghosh, S., Seth, A., Mittal, D., Singh, M., Umesh, S.: DeLoRes: Decorrelating Latent Spaces for Low-Resource Audio Representation Learning (2022)

    Google Scholar 

  26. Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H., Nandi, A.K.: Medical image segmentation using deep learning: a survey. IET Image Proc. 16(5), 1243–1267 (2022). https://doi.org/10.1049/ipr2.12419

    Article  Google Scholar 

  27. Vigueras-Guillén, J.P., et al.: Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation. BMC Biomed. Eng. 1, 4 (2019). https://doi.org/10.1186/s42490-019-0003-2

    Article  Google Scholar 

  28. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2019)

    Google Scholar 

  29. Noroozi, M., Favaro, P.: Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles (2017)

    Google Scholar 

  30. Liu, C., et al.: CUTS: A Fully Unsupervised Framework for Medical Image Segmentation (2023)

    Google Scholar 

  31. Felfeliyan, B., et al.: Self-supervised-RCNN for Medical Image Segmentation with Limited Data Annotation (2022)

    Google Scholar 

  32. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  33. Marsocci, V., Scardapane, S.: Continual Barlow twins: continual self-supervised learning for remote sensing semantic segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 16, 5049–5060 (2023). https://doi.org/10.1109/JSTARS.2023.3280029

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partly funded by Ministerio de Ciencia, Tecnología e Innovacioón, Colombia, Project 124489786239 (Contract 763-2021), Universidad Tecnológica de Bolívar (UTB) Project CI2021P02. K. Mendoza and F. Quintero thank UTB for a post-graduate scholarship. S. Sanchez thanks Fondo Bicentenario for a Ph.D. Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanchez, S. et al. (2024). Self-supervised Deep-Learning Segmentation of Corneal Endothelium Specular Microscopy Images. In: Orjuela-Cañón, A.D., Lopez, J.A., Arias-Londoño, J.D. (eds) Applications of Computational Intelligence. ColCACI 2023. Communications in Computer and Information Science, vol 1865. Springer, Cham. https://doi.org/10.1007/978-3-031-48415-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48415-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48414-8

  • Online ISBN: 978-3-031-48415-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics