Skip to main content

Overview of the Biomass Models

  • Chapter
  • First Online:
Forest Bioenergy

Part of the book series: Green Energy and Technology ((GREEN))

  • 95 Accesses

Abstract

The diversity of species, tree allometry, and stand structure makes modelling forest biomass a challenge. At tree level diameter at breast height, and height are the most frequently used explanatory variables. Yet, other variables that encompass the variability in tree allometry due to species, stand structure, competition between trees, and site allow better performances of the biomass models. Similarly, at area level, the biomass functions have large variability in the data and explanatory variables used for modelling. This is due to the differences in species, stand structure, and their correlation with the remote sensing data. The combination of different remote sensing data sets from passive and/or active sensors linked with ancillary data enabled to improve models’ performance. Furthermore, a wide set of mathematical methods have been used to capture the stands and forests diversity and variability and accommodate it in the models to improve predictions. Overall, the wide range of biomass models corresponds to a continuous need to develop biomass functions that enable assessing, monitoring and predicting total or per component biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kern CC, Kenefic LS, Kuehne C et al (2021) Relative influence of stand and site factors on aboveground live-tree carbon sequestration and mortality in managed and unmanaged forests. For Ecol Manage 493:119266. https://doi.org/10.1016/j.foreco.2021.119266

    Article  Google Scholar 

  2. Ontl TA, Janowiak MK, Swanston CW et al (2020) Forest management for carbon sequestration and climate adaptation. J Forest 118:86–101. https://doi.org/10.1093/jofore/fvz062

    Article  Google Scholar 

  3. Forrester DI (2021) Does individual-tree biomass growth increase continuously with tree size? For Ecol Manage 481:118717. https://doi.org/10.1016/j.foreco.2020.118717

    Article  Google Scholar 

  4. Mankou GS, Ligot G, Loubota Panzou GJ et al (2021) Tropical tree allometry and crown allocation, and their relationship with species traits in central Africa. For Ecol Manage 493:119262. https://doi.org/10.1016/j.foreco.2021.119262

    Article  Google Scholar 

  5. Xiang W, Li L, Ouyang S et al (2021) Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations. Eur J Forest Res 140:317–332. https://doi.org/10.1007/s10342-020-01333-0

    Article  Google Scholar 

  6. Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Springer, Netherlands, Dordrecht

    Book  Google Scholar 

  7. Brown S, Gillespie ARJ, Lugo AE (1989) Biomass estimation methods for tropical forests with aplications to forest inventory data. Forest Sci 35:881–902. https://doi.org/10.1093/forestscience/35.4.881

    Article  Google Scholar 

  8. Eamus D, McGuinness K, Burrows W (2000) Review of allometric relationships for estimating woody biomass for Queensland, the Northern Territory and Western Australia. Australian Greenhouse Office, Canberra

    Google Scholar 

  9. Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimators for United States tree species. Forest Sci 49:12–35. https://doi.org/10.1093/forestscience/49.1.12

    Article  Google Scholar 

  10. Keith H, Barrett D, Keenan R (2000) Review of allometric relationships for estimating woody biomass for New South Wales, the Australian Capital Territory, Victoria, Tasmania and South Australia. Australian Greenhouse Office, Canberra

    Google Scholar 

  11. Návar J (2009) Biomass component equations for Latin American species and groups of species. Ann For Sci 66:208–208. https://doi.org/10.1051/forest/2009001

    Article  Google Scholar 

  12. Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. For Ecol Manage 97:1–24. https://doi.org/10.1016/S0378-1127(97)00019-4

    Article  Google Scholar 

  13. Zianis D, Suomen Metsätieteellinen Seura, Metsäntutkimuslaitos (2005) Biomass and stem volume equations for tree species in Europe. Finnish Society of Forest Science, Finnish Forest Research Institute, Helsinki, Finland

    Google Scholar 

  14. Correia A, Faias S, Tomé M (2008) Ajustamento Simultâneo de Equações de Biomassa de Pinheiro Manso no Sul de Portugal. Silva Lusitana 16:197–205

    Google Scholar 

  15. Paul KI, Roxburgh SH, England JR et al (2013) Development and testing of allometric equations for estimating above-ground biomass of mixed-species environmental plantings. For Ecol Manage 310:483–494. https://doi.org/10.1016/j.foreco.2013.08.054

    Article  Google Scholar 

  16. Jagodziński AM, Dyderski MK, Gęsikiewicz K et al (2018) How do tree stand parameters affect young Scots pine biomass?—Allometric equations and biomass conversion and expansion factors. For Ecol Manage 409:74–83. https://doi.org/10.1016/j.foreco.2017.11.001

    Article  Google Scholar 

  17. Reed D, Tomé M (1998) Total aboveground biomass and net dry matter accumulation by plant component in young Eucalyptus globulus in response to irrigation. For Ecol Manage 103:21–32. https://doi.org/10.1016/S0378-1127(97)00174-6

    Article  Google Scholar 

  18. Zabek LM, Prescott CE (2006) Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia. For Ecol Manage 223:291–302. https://doi.org/10.1016/j.foreco.2005.11.009

    Article  Google Scholar 

  19. Vande Walle I, Van Camp N, Van de Casteele L et al (2007) Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) I—Biomass production after 4 years of tree growth. Biomass Bioenerg 31:267–275. https://doi.org/10.1016/j.biombioe.2007.01.019

    Article  Google Scholar 

  20. Menéndez-Miguélez M, Canga E, Barrio-Anta M et al (2013) A three level system for estimating the biomass of Castanea sativa Mill. coppice stands in north-west Spain. For Ecol Manage 291:417–426. https://doi.org/10.1016/j.foreco.2012.11.040

    Article  Google Scholar 

  21. Paul KI, Roxburgh SH, Ritson P et al (2013) Testing allometric equations for prediction of above-ground biomass of mallee eucalypts in southern Australia. For Ecol Manage 310:1005–1015. https://doi.org/10.1016/j.foreco.2013.09.040

    Article  Google Scholar 

  22. Manolis EN, Zagas TD, Poravou CA, Zagas DT (2016) Biomass assessment for sustainable bioenergy utilization in a Mediterranean forest ecosystem in northwest Greece. Ecol Eng 91:537–544. https://doi.org/10.1016/j.ecoleng.2016.02.041

    Article  Google Scholar 

  23. Mosseler A, Major JE, Labrecque M, Larocque GR (2014) Allometric relationships in coppice biomass production for two North American willows (Salix spp.) across three different sites. For Ecol Manage 320:190–196. https://doi.org/10.1016/j.foreco.2014.02.027

    Article  Google Scholar 

  24. Oliveira TS, Tomé M (2017) Improving biomass estimation for Eucalyptus globulus Labill at stand level in Portugal. Biomass Bioenerg 96:103–111. https://doi.org/10.1016/j.biombioe.2016.11.010

    Article  Google Scholar 

  25. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO, Rome

    Google Scholar 

  26. Chave J, Andalo C, Brown S et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. https://doi.org/10.1007/s00442-005-0100-x

    Article  Google Scholar 

  27. Cole TG, Ewel JJ (2006) Allometric equations for four valuable tropical tree species. For Ecol Manage 229:351–360. https://doi.org/10.1016/j.foreco.2006.04.017

    Article  Google Scholar 

  28. Feldpausch TR, Lloyd J, Lewis SL et al (2012) Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9:3381–3403. https://doi.org/10.5194/bg-9-3381-2012

    Article  Google Scholar 

  29. Hairiah K, Sitompul S (2001) Methods for sampling carbon stocks above and below ground. International centre for research in agroforestry. Bogor, Indonesia

    Google Scholar 

  30. Mattsson E, Ostwald M, Wallin G, Nissanka SP (2016) Heterogeneity and assessment uncertainties in forest characteristics and biomass carbon stocks: important considerations for climate mitigation policies. Land Use Policy 59:84–94. https://doi.org/10.1016/j.landusepol.2016.08.026

    Article  Google Scholar 

  31. Terakunpisut J, Gajaseni N, Ruankawe N (2007) Carbon sequestration potential in aboveground biomass of Thong Pha Phum national forest, Thailand. Appl Ecol Environ Res 5:93–102

    Article  Google Scholar 

  32. Vieilledent G, Vaudry R, Andriamanohisoa SF et al (2012) A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl 22:572–583. https://doi.org/10.1890/11-0039.1

    Article  Google Scholar 

  33. Tabacchi G, Di Cosmo L, Gasparini P (2011) Aboveground tree volume and phytomass prediction equations for forest species in Italy. Eur J Forest Res 130:911–934. https://doi.org/10.1007/s10342-011-0481-9

    Article  Google Scholar 

  34. Forrester DI, Dumbrell IC, Elms SR et al (2021) Can crown variables increase the generality of individual tree biomass equations? Trees 35:15–26. https://doi.org/10.1007/s00468-020-02006-6

    Article  Google Scholar 

  35. Elfving B, Ulvcrona KA, Egnell G (2017) Biomass equations for lodgepole pine in northern Sweden. Can J For Res 47:89–96. https://doi.org/10.1139/cjfr-2016-0131

    Article  Google Scholar 

  36. Levine J, de Valpine P, Battles J (2021) Generalized additive models reveal among-stand variation in live tree biomass equations. Can J For Res 51:546–564. https://doi.org/10.1139/cjfr-2020-0219

    Article  Google Scholar 

  37. Zhang J, Fiddler GO, Young DH et al (2021) Allometry of tree biomass and carbon partitioning in ponderosa pine plantations grown under diverse conditions. For Ecol Manage 497:119526. https://doi.org/10.1016/j.foreco.2021.119526

    Article  Google Scholar 

  38. Jorge C, Tomé M, Ruiz-Peinado R et al (2023) Quercus suber allometry in the west mediterranean basin. Forests 14:649. https://doi.org/10.3390/f14030649

    Article  Google Scholar 

  39. Annighöfer P, Ameztegui A, Ammer C et al (2016) Species-specific and generic biomass equations for seedlings and saplings of European tree species. Eur J Forest Res 135:313–329. https://doi.org/10.1007/s10342-016-0937-z

    Article  Google Scholar 

  40. Sillett SC, Van Pelt R, Carroll AL et al (2020) Aboveground biomass dynamics and growth efficiency of Sequoia sempervirens forests. For Ecol Manage 458:117740. https://doi.org/10.1016/j.foreco.2019.117740

    Article  Google Scholar 

  41. Li H, Zhao P (2013) Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. For Ecol Manage 289:153–163. https://doi.org/10.1016/j.foreco.2012.10.002

    Article  Google Scholar 

  42. Dillen M, Vanhellemont M, Verdonckt P et al (2016) Productivity, stand dynamics and the selection effect in a mixed willow clone short rotation coppice plantation. Biomass Bioenerg 87:46–54. https://doi.org/10.1016/j.biombioe.2016.02.013

    Article  Google Scholar 

  43. Ozdemir E, Makineci E, Yilmaz E et al (2019) Biomass estimation of individual trees for coppice-originated oak forests. Eur J Forest Res 138:623–637. https://doi.org/10.1007/s10342-019-01194-2

    Article  Google Scholar 

  44. Patrício MS, Monteiro ML, Tomé M (2005) Biomass equations for Castanea sativa high forest in the northwest of Portugal. Acta Horticulturae 727–732. https://doi.org/10.17660/ActaHortic.2005.693.98

  45. Nord-Larsen T, Meilby H, Skovsgaard JP (2017) Simultaneous estimation of biomass models for 13 tree species: effects of compatible additivity requirements. Can J For Res 47:765–776. https://doi.org/10.1139/cjfr-2016-0430

    Article  Google Scholar 

  46. Dutcă I, Mather R, Blujdea VNB et al (2018) Site-effects on biomass allometric models for early growth plantations of Norway spruce (Picea abies (L.) Karst.). Biomass Bioenerg 116:8–17. https://doi.org/10.1016/j.biombioe.2018.05.013

    Article  Google Scholar 

  47. Al-Bakri JT, Taylor JC (2003) Application of NOAA AVHRR for monitoring vegetation conditions and biomass in Jordan. J Arid Environ 54:579–593. https://doi.org/10.1006/jare.2002.1081

    Article  Google Scholar 

  48. Li X, Du H, Mao F et al (2018) Estimating bamboo forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms. Agric For Meteorol 256–257:445–457. https://doi.org/10.1016/j.agrformet.2018.04.002

    Article  Google Scholar 

  49. Zhang Q, He HS, Liang Y et al (2018) Integrating forest inventory data and MODIS data to map species-level biomass in Chinese boreal forests. Can J For Res 48:461–479. https://doi.org/10.1139/cjfr-2017-0346

    Article  Google Scholar 

  50. Blackard J, Finco M, Helmer E et al (2008) Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens Environ 112:1658–1677. https://doi.org/10.1016/j.rse.2007.08.021

    Article  Google Scholar 

  51. Propastin P (2013) Large-scale mapping of aboveground biomass of tropical rainforest in Sulawesi, Indonesia, using Landsat ETM+ and MODIS data. GISci Remote Sens 50:633–651

    Article  Google Scholar 

  52. Steininger MK (2000) Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. Int J Remote Sens 21:1139–1157. https://doi.org/10.1080/014311600210119

    Article  Google Scholar 

  53. Zheng D, Rademacher J, Chen J et al (2004) Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens Environ 93:402–411. https://doi.org/10.1016/j.rse.2004.08.008

    Article  Google Scholar 

  54. Gasparri NI, Parmuchi MG, Bono J et al (2010) Assessing multi-temporal Landsat 7 ETM+ images for estimating above-ground biomass in subtropical dry forests of Argentina. J Arid Environ 74:1262–1270. https://doi.org/10.1016/j.jaridenv.2010.04.007

    Article  Google Scholar 

  55. Foody GM, Cutler ME, McMorrow J et al (2001) Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Glob Ecol Biogeogr 10:379–387. https://doi.org/10.1046/j.1466-822X.2001.00248.x

    Article  Google Scholar 

  56. Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85:463–474. https://doi.org/10.1016/S0034-4257(03)00039-7

    Article  Google Scholar 

  57. Powell SL, Cohen WB, Healey SP et al (2010) Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens Environ 114:1053–1068. https://doi.org/10.1016/j.rse.2009.12.018

    Article  Google Scholar 

  58. Zhu X, Liu D (2015) Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J Photogramm Remote Sens 102:222–231. https://doi.org/10.1016/j.isprsjprs.2014.08.014

    Article  Google Scholar 

  59. Fernández-Manso O, Fernández-Manso A, Quintano C (2014) Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images. Int J Appl Earth Obs Geoinf 31:45–56. https://doi.org/10.1016/j.jag.2014.03.005

    Article  Google Scholar 

  60. Heiskanen J (2006) Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. Int J Remote Sens 27:1135–1158. https://doi.org/10.1080/01431160500353858

    Article  Google Scholar 

  61. Poulain M, Peña M, Schmidt A et al (2010) Relationships between forest variables and remote sensing data in a Nothofagus pumilio forest. Geocarto Int 25:25–43. https://doi.org/10.1080/10106040902803558

    Article  Google Scholar 

  62. Pham LTH, Brabyn L (2017) Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS J Photogramm Remote Sens 128:86–97. https://doi.org/10.1016/j.isprsjprs.2017.03.013

    Article  Google Scholar 

  63. Askar NN, Phairuang W et al (2018) Estimating aboveground biomass on private forest using sentinel-2 imagery. J Sensors 2018:1–11. https://doi.org/10.1155/2018/6745629

    Article  Google Scholar 

  64. Pandit S, Tsuyuki S, Dube T (2018) Estimating above-ground biomass in sub-tropical buffer zone community forests, Nepal, using sentinel 2 data. Remote Sensing 10:601. https://doi.org/10.3390/rs10040601

    Article  Google Scholar 

  65. Leboeuf A, Beaudoin A, Fournier R et al (2007) A shadow fraction method for mapping biomass of northern boreal black spruce forests using QuickBird imagery. Remote Sens Environ 110:488–500. https://doi.org/10.1016/j.rse.2006.05.025

    Article  Google Scholar 

  66. Sousa AMO, Gonçalves AC, Mesquita P, Marques da Silva JR (2015) Biomass estimation with high resolution satellite images: a case study of Quercus rotundifolia. ISPRS J Photogramm Remote Sens 101:69–79. https://doi.org/10.1016/j.isprsjprs.2014.12.004

    Article  Google Scholar 

  67. Macedo FL, Sousa AMO, Gonçalves AC et al (2018) Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images. European J Remote Sensing 51:932–944. https://doi.org/10.1080/22797254.2018.1521250

    Article  Google Scholar 

  68. Sousa AMO, Gonçalves AC, da Silva JRM (2017) Above‐ground biomass estimation with high spatial resolution satellite images. In: Tumuluru JS (ed) Biomass volume estimation and valorization for energy. InTech

    Google Scholar 

  69. Gonçalves AC, Sousa AMO, Mesquita P (2019) Functions for aboveground biomass estimation derived from satellite images data in Mediterranean agroforestry systems. Agrofor Syst 93:1485–1500. https://doi.org/10.1007/s10457-018-0252-4

    Article  Google Scholar 

  70. Gonçalves AC, Sousa AMO, Mesquita PG (2017) Estimation and dynamics of above ground biomass with very high resolution satellite images in Pinus pinaster stands. Biomass Bioenerg 106:146–154. https://doi.org/10.1016/j.biombioe.2017.08.026

    Article  Google Scholar 

  71. Lourenço P, Godinho S, Sousa A, Gonçalves AC (2021) Estimating tree aboveground biomass using multispectral satellite-based data in Mediterranean agroforestry system using random forest algorithm. Remote Sens Appl: Soc Environ 23:100560. https://doi.org/10.1016/j.rsase.2021.100560

    Article  Google Scholar 

  72. Wang M, Cao W, Guan Q et al (2018) Potential of texture metrics derived from high-resolution PLEIADES satellite data for quantifying aboveground carbon of Kandelia candel mangrove forests in Southeast China. Wetlands Ecol Manage 26:789–803. https://doi.org/10.1007/s11273-018-9610-2

    Article  Google Scholar 

  73. Ploton P, Barbier N, Couteron P et al (2017) Toward a general tropical forest biomass prediction model from very high resolution optical satellite images. Remote Sens Environ 200:140–153. https://doi.org/10.1016/j.rse.2017.08.001

    Article  Google Scholar 

  74. Jachowski NRA, Quak MSY, Friess DA et al (2013) Mangrove biomass estimation in Southwest Thailand using machine learning. Appl Geogr 45:311–321. https://doi.org/10.1016/j.apgeog.2013.09.024

    Article  Google Scholar 

  75. Kaasalainen S, Holopainen M, Karjalainen M et al (2015) Combining lidar and synthetic aperture radar data to estimate forest biomass: status and prospects. Forests 6:252–270. https://doi.org/10.3390/f6010252

    Article  Google Scholar 

  76. Santos J (2003) Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest. Remote Sens Environ 87:482–493. https://doi.org/10.1016/j.rse.2002.12.001

    Article  Google Scholar 

  77. Solberg S, Astrup R, Gobakken T et al (2010) Estimating spruce and pine biomass with interferometric X-band SAR. Remote Sens Environ 114:2353–2360. https://doi.org/10.1016/j.rse.2010.05.011

    Article  Google Scholar 

  78. Lau A, Calders K, Bartholomeus H et al (2019) Tree biomass equations from terrestrial LiDAR: a case study in Guyana. Forests 10:527. https://doi.org/10.3390/f10060527

    Article  Google Scholar 

  79. Salum RB, Souza-Filho PWM, Simard M et al (2020) Improving mangrove above-ground biomass estimates using LiDAR. Estuar Coast Shelf Sci 236:106585. https://doi.org/10.1016/j.ecss.2020.106585

    Article  Google Scholar 

  80. Esteban J, McRoberts R, Fernández-Landa A et al (2019) Estimating forest volume and biomass and their changes using random forests and remotely sensed data. Remote Sens 11:1944. https://doi.org/10.3390/rs11161944

    Article  Google Scholar 

  81. Knapp N, Huth A, Kugler F et al (2018) Model-assisted estimation of tropical forest biomass change: a comparison of approaches. Remote Sens 10:731. https://doi.org/10.3390/rs10050731

    Article  Google Scholar 

  82. Swatantran A, Dubayah R, Roberts D et al (2011) Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sens Environ 115:2917–2930

    Article  Google Scholar 

  83. Knapp N, Fischer R, Cazcarra-Bes V, Huth A (2020) Structure metrics to generalize biomass estimation from lidar across forest types from different continents. Remote Sens Environ 237:111597. https://doi.org/10.1016/j.rse.2019.111597

    Article  Google Scholar 

  84. Nelson RF, Hyde P, Johnson P et al (2007) Investigating RaDAR–LiDAR synergy in a North Carolina pine forest. Remote Sens Environ 110:98–108. https://doi.org/10.1016/j.rse.2007.02.006

    Article  Google Scholar 

  85. Næsset E, Gobakken T, Solberg S et al (2011) Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: a case study from a boreal forest area. Remote Sens Environ 115:3599–3614. https://doi.org/10.1016/j.rse.2011.08.021

    Article  Google Scholar 

  86. Tsui OW, Coops NC, Wulder MA et al (2012) Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest. ISPRS J Photogramm Remote Sens 69:121–133. https://doi.org/10.1016/j.isprsjprs.2012.02.009

    Article  Google Scholar 

  87. Montesano PM, Nelson RF, Dubayah RO et al (2014) The uncertainty of biomass estimates from LiDAR and SAR across a boreal forest structure gradient. Remote Sens Environ 154:398–407. https://doi.org/10.1016/j.rse.2014.01.027

    Article  Google Scholar 

  88. Tanase MA, Panciera R, Lowell K et al (2014) Forest biomass estimation at high spatial resolution: radar versus lidar sensors. IEEE Geosci Remote Sens Lett 11:711–715. https://doi.org/10.1109/LGRS.2013.2276947

    Article  Google Scholar 

  89. Omar H, Misman M, Kassim A (2017) Synergetic of PALSAR-2 and sentinel-1A SAR polarimetry for retrieving aboveground biomass in dipterocarp forest of Malaysia. Appl Sci 7:675. https://doi.org/10.3390/app7070675

    Article  Google Scholar 

  90. Schlund M, Kotowska MM, Brambach F et al (2021) Spaceborne height models reveal above ground biomass changes in tropical landscapes. For Ecol Manage 497:119497. https://doi.org/10.1016/j.foreco.2021.119497

    Article  Google Scholar 

  91. Shendryk I, Hellström M, Klemedtsson L, Kljun N (2014) Low-density LiDAR and optical imagery for biomass estimation over boreal forest in Sweden. Forests 5:992–1010. https://doi.org/10.3390/f5050992

    Article  Google Scholar 

  92. Sun G, Ranson KJ, Guo Z et al (2011) Forest biomass mapping from lidar and radar synergies. Remote Sens Environ 115:2906–2916. https://doi.org/10.1016/j.rse.2011.03.021

    Article  Google Scholar 

  93. Lucas R, Van De Kerchove R, Otero V et al (2020) Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data. Remote Sens Environ 237:111543. https://doi.org/10.1016/j.rse.2019.111543

    Article  Google Scholar 

  94. Brovkina O, Novotny J, Cienciala E et al (2017) Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe. Ecol Eng 100:219–230. https://doi.org/10.1016/j.ecoleng.2016.12.004

    Article  Google Scholar 

  95. Persson H (2016) Estimation of boreal forest attributes from very high resolution pléiades data. Remote Sens 8:736. https://doi.org/10.3390/rs8090736

    Article  Google Scholar 

  96. Basuki TM, Skidmore AK, Hussin YA, Van Duren I (2013) Estimating tropical forest biomass more accurately by integrating ALOS PALSAR and landsat-7 ETM+ data. Int J Remote Sens 34:4871–4888. https://doi.org/10.1080/01431161.2013.777486

    Article  Google Scholar 

  97. Phua M-H, Johari SA, Wong OC et al (2017) Synergistic use of landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests. For Ecol Manage 406:163–171. https://doi.org/10.1016/j.foreco.2017.10.007

    Article  Google Scholar 

  98. Berninger A, Lohberger S, Stängel M, Siegert F (2018) SAR-based estimation of above-ground biomass and its changes in tropical forests of Kalimantan using L- and C-band. Remote Sens 10:831. https://doi.org/10.3390/rs10060831

    Article  Google Scholar 

  99. Cortés L, Hernández J, Valencia D, Corvalán P (2014) Estimation of above-ground forest biomass using landsat ETM+ Aster GDEM and Lidar. Forest Res 3:1000117. https://doi.org/10.4172/2168-9776.1000117

    Article  Google Scholar 

  100. Huang H, Liu C, Wang X et al (2019) Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sens Environ 221:225–234. https://doi.org/10.1016/j.rse.2018.11.017

    Article  Google Scholar 

  101. Chi H, Sun G, Huang J et al (2017) Estimation of forest aboveground biomass in Changbai mountain region using ICESat/GLAS and Landsat/TM data. Remote Sens 9:707. https://doi.org/10.3390/rs9070707

    Article  Google Scholar 

  102. Ghosh SM, Behera MD (2018) Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Appl Geogr 96:29–40. https://doi.org/10.1016/j.apgeog.2018.05.011

    Article  Google Scholar 

  103. Matasci G, Hermosilla T, Wulder MA et al (2018) Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots. Remote Sens Environ 209:90–106. https://doi.org/10.1016/j.rse.2017.12.020

    Article  Google Scholar 

  104. Kashongwe HB, Roy DP, Bwangoy JRB (2020) Democratic republic of the congo tropical forest canopy height and aboveground biomass estimation with landsat-8 operational land imager (OLI) and airborne LiDAR data: the effect of seasonal landsat image selection. Remote Sens 12:1360. https://doi.org/10.3390/rs12091360

    Article  Google Scholar 

  105. Guerra-Hernández J, Narine LL, Pascual A et al (2022) Aboveground biomass mapping by integrating ICESat-2, SENTINEL-1, SENTINEL-2, ALOS2/PALSAR2, and topographic information in Mediterranean forests. GISci Remote Sens 59:1509–1533. https://doi.org/10.1080/15481603.2022.2115599

    Article  Google Scholar 

  106. Kattenborn T, Maack J, Faßnacht F et al (2015) Mapping forest biomass from space—fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models. Int J Appl Earth Obs Geoinf 35:359–367. https://doi.org/10.1016/j.jag.2014.10.008

    Article  Google Scholar 

  107. Andersen H-E, Strunk J, Temesgen H et al (2012) Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska. Can J Remote Sens 37:596–611. https://doi.org/10.5589/m12-003

    Article  Google Scholar 

  108. Tian S, Tanase MA, Panciera R et al (2013) Forest biomass estimation using radar and lidar synergies. 2013 IEEE International geoscience and remote sensing symposium—IGARSS. IEEE, Melbourne, Australia, pp 2145–2148

    Chapter  Google Scholar 

  109. Carreiras J, Melo J, Vasconcelos M (2013) Estimating the above-ground biomass in miombo savanna woodlands (Mozambique, East Africa) using L-band synthetic aperture radar data. Remote Sens 5:1524–1548. https://doi.org/10.3390/rs5041524

    Article  Google Scholar 

  110. Saatchi SS, Harris NL, Brown S et al (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 108:9899–9904

    Article  Google Scholar 

  111. Chen L, Ren C, Zhang B et al (2018) Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests 9:582. https://doi.org/10.3390/f9100582

    Article  Google Scholar 

  112. Chen L, Wang Y, Ren C et al (2019) Optimal combination of predictors and algorithms for forest above-ground biomass mapping from sentinel and SRTM data. Remote Sens 11:414. https://doi.org/10.3390/rs11040414

    Article  Google Scholar 

  113. Castillo JAA, Apan AA, Maraseni TN, Salmo SG (2017) Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J Photogramm Remote Sens 134:70–85. https://doi.org/10.1016/j.isprsjprs.2017.10.016

    Article  Google Scholar 

  114. Zimbres B, Rodríguez-Veiga P, Shimbo JZ et al (2021) Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. For Ecol Manage 499:119615. https://doi.org/10.1016/j.foreco.2021.119615

    Article  Google Scholar 

  115. Su H, Shen W, Wang J et al (2020) Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests. Forest Ecosystems 7:64. https://doi.org/10.1186/s40663-020-00276-7

    Article  Google Scholar 

  116. Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB International, Wallingford, U.K.

    Google Scholar 

  117. Chen C (2019) Above-ground carbon stock in merchantable trees not reduced between cycles of spruce budworm outbreaks due to changing species composition in spruce-fir forests of Maine, USA. For Ecol Manage 453:117590. https://doi.org/10.1016/j.foreco.2019.117590

    Article  Google Scholar 

  118. Kangas A, Astrup R, Breidenbach J et al (2018) Remote sensing and forest inventories in Nordic countries—roadmap for the future. Scand J For Res 33:397–412. https://doi.org/10.1080/02827581.2017.1416666

    Article  Google Scholar 

  119. Lu D, Chen Q, Wang G et al (2016) A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int J Digital Earth 9:63–105. https://doi.org/10.1080/17538947.2014.990526

    Article  Google Scholar 

Download references

Funding

This work is funded by National Funds through FCT—Foundation for Science and Technology under the Project UIDB/05183/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cristina Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonçalves, A.C., Sousa, A.M.O. (2024). Overview of the Biomass Models. In: Gonçalves, A.C., Malico, I. (eds) Forest Bioenergy. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-48224-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48224-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48223-6

  • Online ISBN: 978-3-031-48224-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics