Skip to main content

Digital Technologies for Fire Evacuations

  • Chapter
  • First Online:
Intelligent Building Fire Safety and Smart Firefighting

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.C. McConnell, K.E. Boyce, Refuge areas and vertical evacuation of multistorey buildings: the end users’ perspectives. Fire Mater. 39, 396–406 (2015). https://doi.org/10.1002/fam.2205

    Article  Google Scholar 

  2. A. Rahouti, R. Lovreglio, D. Nilsson, E. Kuligowski, P. Jackson, F. Rothas, Investigating evacuation behaviour in retirement facilities: case studies from New Zealand, Fire Technol. (2020). https://doi.org/10.1007/s10694-020-01058-x

  3. E. Ronchi, D. Nilsson, Modelling total evacuation strategies for high-rise buildings. Build. Simul. 7, 73–87 (2013). https://doi.org/10.1007/s12273-013-0132-9

    Article  Google Scholar 

  4. G.V. Hadjisophocleous, N. Benichou, A.S. Tamim, Literature review of performance-based fire codes and design environment. J. Fire. Prot. Eng. 9, 12–40 (1998). https://doi.org/10.1177/104239159800900102

    Article  Google Scholar 

  5. A. Alvarez, B.J. Meacham, N.A. Dembsey, J.R. Thomas, Twenty years of performance-based fire protection design: Challenges faced and a look ahead. J. Fire. Prot. Eng. 23, 249–276 (2013). https://doi.org/10.1177/1042391513484911/ASSET/IMAGES/LARGE/10.1177_1042391513484911-FIG1.JPEG

    Article  Google Scholar 

  6. S.M. V. Gwynne, E.R. Rosenbaum, Employing the hydraulic model in assessing emergency movement, in SFPE Handb Fire Prot Eng (Springer New York, New York, NY, 2016), pp 2115–2151. https://doi.org/10.1007/978-1-4939-2565-0_59

  7. E.D. Kuligowski, Computer Evacuation Models for Buildings, in SFPE Handb Fire Prot Eng (2016), pp. 2152–2180

    Google Scholar 

  8. R. Lovreglio, E. Ronchi, M.J. Kinsey, An online survey of pedestrian evacuation model usage and users. Fire Technol. 56, 1133–1153 (2019). https://doi.org/10.1007/s10694-019-00923-8

    Article  Google Scholar 

  9. S.M.V. Gwynne, E.D. Kuligowski, K.E. Boyce, D. Nilsson, A.P. Robbins, R. Lovreglio, J.R. Thomas, A. Roy-Poirier, Enhancing egress drills: Preparation and assessment of evacuee performance. Fire Mater. 43, 613–631 (2017). https://doi.org/10.1002/fam.2448

    Article  Google Scholar 

  10. R. Lovreglio, Modelling decision-making in fire evacuation based on the random utility theory—PhD Thesis, Politecnico of Bari, Milan and Turin (2016). https://doi.org/10.13140/RG.2.1.1695.5281/1

  11. S.M. Gwynne, L.M. Hulse, M.J. Kinsey, Guidance for the Model Developer on Representing Human Behavior in Egress Models, Fire Technol., 1–26 (2015). https://doi.org/10.1007/s10694-015-0501-2

  12. P. Thompson, D. Nilsson, K. Boyce, D. McGrath, Evacuation models are running out of time. Fire Saf. J. 78, 251–261 (2015). https://doi.org/10.1016/j.firesaf.2015.09.004

    Article  Google Scholar 

  13. A. Sawhney, M. Riley, J. Irizarry, Construction 4.0—An innovation platform for the built environment (2020)

    Google Scholar 

  14. R. Sacks, C. Eastman, G. Lee, P. Teicholz, BIM handbook: A guide to building information modeling for owners, designers, engineers, contractors, and facility managers (Wiley, 2018)

    Google Scholar 

  15. M.Z. Naser, C. Lautenberger, E. Kuligowski, Special Issue on “Smart Systems in Fire Engineering, Fire Technol. 57, 2737–2740 (2021). https://doi.org/10.1007/S10694-021-01196-W/METRICS

  16. C. Bishop, N. Nasrabadi, Pattern recognition and machine learning, Springer. N. Y. (2006). https://doi.org/10.1007/978-0-387-45528-0

    Article  Google Scholar 

  17. E.A.M. van Dis, J. Bollen, W. Zuidema, R. van Rooij, C.L. Bockting, ChatGPT: five priorities for research, Nat. 2023 6147947. 614, 224–226 (2023). https://doi.org/10.1038/d41586-023-00288-7

  18. R. Lovreglio, D. Borri, L. Dell’Olio, A. Ibeas, A discrete choice model based on random utilities for exit choice in emergency evacuations. Saf. Sci. 62, 418–426 (2014). https://doi.org/10.1016/j.ssci.2013.10.004

    Article  Google Scholar 

  19. R. Lovreglio, M.T. Kinateder, Augmented reality for pedestrian evacuation research: promises and limitations, Saf. Sci. 128, 104750 (2020). https://doi.org/10.1016/j.ssci.2020.104750

  20. E. Ronchi, D. Nilsson, S. Kojić, J. Eriksson, R. Lovreglio, H. Modig, A.L. Walter, A virtual reality experiment on flashing lights at emergency exit portals for road tunnel evacuation, Fire Technol. 52, (2016). https://doi.org/10.1007/s10694-015-0462-5

  21. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, B. MacIntyre, Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21, 34–47 (2001). https://doi.org/10.1109/38.963459

    Article  Google Scholar 

  22. J. Steuer, Defining virtual reality: dimensions determining telepresence. J. Commun. 42, 73–93 (1992). https://doi.org/10.1111/J.1460-2466.1992.TB00812.X

    Article  Google Scholar 

  23. X. Li, W. Yi, H.-L. Chi, X. Wang, A.P.C. Chan, A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 86, 150–162 (2018). https://doi.org/10.1016/J.AUTCON.2017.11.003

    Article  Google Scholar 

  24. C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, Surround-screen projection-based virtual reality: The design and implementation of the CAVE, in Proc 20th Annual Conf Compute Graph Interact Tech SIGGRAPH 1993 (1993), pp. 135–142. https://doi.org/10.1145/166117.166134

  25. R. Lovreglio, P. Thompson, Z. Feng, Automation in fire safety engineering using BIM and generative design. Fire Technol. 58, 1–5 (2022). https://doi.org/10.1007/S10694-021-01153-7/FIGURES/1

    Article  Google Scholar 

  26. X. Zhao, R. Lovreglio, D. Nilsson, Modelling and interpreting pre-evacuation decision-making using machine learning, Autom. Constr., (2020)

    Google Scholar 

  27. N. Xu, R. Lovreglio, E.D. Kuligowski, T.J. Cova, D. Nilsson, X. Zhao, Predicting and assessing wildfire evacuation decision-making using machine learning: findings from the 2019 Kincade Fire, Fire Technol. 59, 793–825 (2023). https://doi.org/10.1007/S10694-023-01363-1/TABLES/7

  28. X. Zhao, R. Lovreglio, E. Kuligowski, D. Nilsson, Using artificial intelligence for safe and effective wildfire evacuations, Fire Technol., 1–3 (2020). https://doi.org/10.1007/s10694-020-00979-x

  29. A. Sahebi, K. Jahangiri, A. Alibabaei, D. Khorasani-Zavareh, Using artificial intelligence for predicting the duration of emergency evacuation during hospital fire. Disaster Med. Public Health Prep. 17, e229 (2023). https://doi.org/10.1017/DMP.2022.187

    Article  Google Scholar 

  30. C. Molnar, Interpretable machine learning (Lulu. com, 2020)

    Google Scholar 

  31. Y. Sun, X. Zhao, R. Lovreglio, E. Kuligowski, AI for large-scale evacuation modeling: promises and challenges, in Interpret Mach Learn Anal Des Assessment, Inf Decis Mak Civ Infrastruct (2023)

    Google Scholar 

  32. S. Grajdura, S. Borjigin, D. Niemeier, Fast-moving dire wildfire evacuation simulation. Transp. Res. Part D Transp. Environ. 104, 103190 (2022). https://doi.org/10.1016/J.TRD.2022.103190

    Article  Google Scholar 

  33. L. Hong, V. Frias-Martinez, Modeling and predicting evacuation flows during hurricane Irma. EPJ Data Sci. 9, 29 (2020). https://doi.org/10.1140/EPJDS/S13688-020-00247-6

    Article  Google Scholar 

  34. X. Li, S. Hasan, A. Culotta, Identifying hurricane evacuation intent on Twitter. Proc. Int. AAAI Conf. Web Soc. Media. 16, 618–627 (2022). https://doi.org/10.1609/ICWSM.V16I1.19320

    Article  Google Scholar 

  35. K.C. Roy, S. Hasan, A. Culotta, N. Eluru, Predicting traffic demand during hurricane evacuation using Real-time data from transportation systems and social media. Transp. Res. Part C Emerg. Technol. 131, 103339 (2021). https://doi.org/10.1016/J.TRC.2021.103339

    Article  Google Scholar 

  36. R. Lovreglio, M. Kinateder, Augmented reality for pedestrian evacuation research: Promises and limitations. Saf. Sci. 128, 104750 (2020). https://doi.org/10.1016/J.SSCI.2020.104750

    Article  Google Scholar 

  37. Z. Feng, V.A. González, R. Amor, R. Lovreglio, G. Cabrera-Guerrero, Immersive virtual reality serious games for evacuation training and research: A systematic literature review. Comput. Educ. 127, 252–266 (2018). https://doi.org/10.1016/J.COMPEDU.2018.09.002

    Article  Google Scholar 

  38. R. Lovreglio, Virtual and augmented reality for human behaviour in disasters: a review, in Fire evacuation model. Tech Conf (2020), p. 14. https://files.thunderheadeng.com/femtc/2020_d3-02-lovreglio-paper.pdf (accessed 21 Feb 2022)

  39. J. Ahn, R. Han, An indoor augmented-reality evacuation system for the Smartphone using personalised Pedometry. Human-Centric Comput. Inf. Sci. 2, 18 (2012). https://doi.org/10.1186/2192-1962-2-18

    Article  Google Scholar 

  40. S. Kanangkaew, N. Jokkaw, T. Tongthong, A real-time fire evacuation system based on the integration of building information modeling and augmented reality. J. Build. Eng. 67, 105883 (2023). https://doi.org/10.1016/J.JOBE.2023.105883

    Article  Google Scholar 

  41. S.J. Yoo, S.H. Choi, Indoor AR navigation and emergency evacuation system based on machine learning and IoT technologies. IEEE Internet Things J. 9, 20853–20868 (2022). https://doi.org/10.1109/JIOT.2022.3175677

    Article  Google Scholar 

  42. D. Paes, Z. Feng, R. Lovreglio, M. King, H.K. Shad, P. Sasikumar, prototyping and testing an optical see-through augmented reality fire safety training system for building occupants, Under Rev., (2023)

    Google Scholar 

  43. S. Shiradkar, L. Rabelo, F. Alasim, K. Nagadi, Virtual world as an interactive safety training platform, Inf. 12, 219 (2021). https://doi.org/10.3390/INFO12060219

  44. A. Rahouti, R. Lovreglio, S. Datoussaïd, T. Descamps, Prototyping and validating a non-immersive virtual reality serious game for healthcare fire safety training. Fire Technol. 57, 3041–3078 (2021). https://doi.org/10.1007/S10694-021-01098-X/FIGURES/15

    Article  Google Scholar 

  45. Ü. Çakiroğlu, S. Gökoğlu, Development of fire safety behavioral skills via virtual reality. Comput. Educ. 133, 56–68 (2019). https://doi.org/10.1016/J.COMPEDU.2019.01.014

    Article  Google Scholar 

  46. Y. Feng, D.C. Duives, S.P. Hoogendoorn, Using virtual reality to study pedestrian exit choice behaviour during evacuations. Saf. Sci. 137, 105158 (2021). https://doi.org/10.1016/J.SSCI.2021.105158

    Article  Google Scholar 

  47. S. Arias, J. Wahlqvist, D. Nilsson, E. Ronchi, H. Frantzich, Pursuing behavioral realism in Virtual Reality for fire evacuation research. Fire Mater. 45, 462–472 (2021). https://doi.org/10.1002/FAM.2922

    Article  Google Scholar 

  48. L.W. Menzemer, E. Ronchi, M.M.V. Karsten, S. Gwynne, J. Frederiksen, A scoping review and bibliometric analysis of methods for fire evacuation training in buildings. Fire Saf. J. 136, 103742 (2023). https://doi.org/10.1016/J.FIRESAF.2023.103742

    Article  Google Scholar 

  49. M. Spearpoint, Transfer of architectural data from the IFC building product model to a fire simulation software tool. J. Fire. Prot. Eng. 17, 271–292 (2007). https://doi.org/10.1177/1042391507074681

    Article  Google Scholar 

  50. J.A.W. Dimyadi, M.J. Spearpoint, R. Amor, Generating fire dynamics simulator geometrical input using an IFC-based building information model, (2007). https://ir.canterbury.ac.nz/handle/10092/680 (Accessed 7 June 2021)

  51. J. Dimyadi, W. Solihin, R. Amor, Using IFC to support enclosure fire dynamics simulation, in Lect Notes Comput Sci (Including Subser. Lect Notes Artif Intell Lect Notes Bioinformatics) (Springer Verlag, 2018), pp. 339–360. https://doi.org/10.1007/978-3-319-91638-5_19

  52. A.A. Siddiqui, J.A. Ewer, P.J. Lawrence, E.R. Galea, I.R. Frost, Building information modelling for performance-based fire safety engineering analysis—a strategy for data sharing, J. Build. Eng., 102794 (2021). https://doi.org/10.1016/J.JOBE.2021.102794

  53. N. Yakhou, P. Thompson, A. Siddiqui, J. Abualdenien, E. Ronchi, The integration of building information modelling and fire evacuation models. J. Build. Eng. 63, 105557 (2023). https://doi.org/10.1016/J.JOBE.2022.105557

    Article  Google Scholar 

  54. Q. Sun, Y. Turkan, A BIM-based simulation framework for fire safety management and investigation of the critical factors affecting human evacuation performance. Adv. Eng. Informatics. 44, 101093 (2020). https://doi.org/10.1016/J.AEI.2020.101093

    Article  Google Scholar 

  55. S.H. Wang, W.C. Wang, K.C. Wang, S.Y. Shih, Applying building information modeling to support fire safety management. Autom. Constr. 59, 158–167 (2015). https://doi.org/10.1016/J.AUTCON.2015.02.001

    Article  Google Scholar 

  56. M.Y. Cheng, K.C. Chiu, Y.M. Hsieh, I.T. Yang, J.S. Chou, Y.W. Wu, BIM integrated smart monitoring technique for building fire prevention and disaster relief. Autom. Constr. 84, 14–30 (2017). https://doi.org/10.1016/J.AUTCON.2017.08.027

    Article  Google Scholar 

  57. X.S. Chen, C.C. Liu, I.C. Wu, A BIM-based visualisation and warning system for fire rescue. Adv. Eng. Informatics. 37, 42–53 (2018). https://doi.org/10.1016/J.AEI.2018.04.015

    Article  Google Scholar 

  58. R. Lovreglio, E.D. Kuligowski, S.M.V. Gwynne, K. Boyce, A Pre-evacuation database for use in egress simulations, Fire Saf. J. (under Rev. (2018))

    Google Scholar 

  59. R. Lovreglio, E. Dillies, E. Kuligowski, A. Rahouti, M. Haghani, Exit choice in built environment evacuation combining immersive virtual reality and discrete choice modelling. Autom. Constr. 141, 104452 (2022). https://doi.org/10.1016/J.AUTCON.2022.104452

    Article  Google Scholar 

  60. R. Lovreglio, E. Kuligowski, A pre-evacuation study using data from evacuation drills and false alarm evacuations in a university library. Fire Saf. J. 131, 103595 (2022). https://doi.org/10.1016/J.FIRESAF.2022.103595

    Article  Google Scholar 

  61. M. Kinateder, E. Ronchi, D. Nilsson, M. Kobes, M. Müller, P. Pauli, A. Mühlberger, Virtual reality for fire evacuation research, in Comput Sci Inf Syst (IEEE, Warsaw, 2014), pp. 313–321. https://doi.org/10.15439/2014F94

  62. U. Rüppel, K. Schatz, Designing a BIM-based serious game for fire safety evacuation simulations. Adv. Eng. Informatics. 25, 600–611 (2011). https://doi.org/10.1016/j.aei.2011.08.001

    Article  Google Scholar 

  63. K. Buchta, P. Wojcik, K. Nakonieczny, J. Janicka, M. Igras-Cybulska, NUX Characters-interaction with voice assistants in Virtual Reality, in Proc.—2022 IEEE Int Symp. Mix Augment Real Adjunct, ISMAR-Adjunct 2022 (2022), pp. 917–918. https://doi.org/10.1109/ISMAR-ADJUNCT57072.2022.00204

  64. K. Buchta, P. Wojcik, K. Nakonieczny, J. Janicka, D. Galuszka, R. Sterna, M. Igras-Cybulska, Modeling and optimising the voice assistant behavior in virtual reality, in Proc.—2022 IEEE Int Symp Mix Augment Real Adjunct, ISMAR-Adjunct 2022. (2022), pp. 397–402. https://doi.org/10.1109/ISMAR-ADJUNCT57072.2022.00086

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lovreglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lovreglio, R., Paes, D., Feng, Z., Zhao, X. (2024). Digital Technologies for Fire Evacuations. In: Huang, X., Tam, W.C. (eds) Intelligent Building Fire Safety and Smart Firefighting. Digital Innovations in Architecture, Engineering and Construction. Springer, Cham. https://doi.org/10.1007/978-3-031-48161-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48161-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48160-4

  • Online ISBN: 978-3-031-48161-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics