Skip to main content

SwarmCurves: Evolutionary Curve Reconstruction

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Abstract

The problem of recovering the shape of a curve given partial information about it is a fundamental problem in many applications in visual computing. Which types of curves are fitted to a given input data depends on the application and varies from piece-wise linear approximation to parametric splines. The choice of approximation method depends on the context of the problem, the nature of the data, and the desired level of accuracy and complexity.

In this paper we introduce SwarmCurves, a curve reconstruction approach based on particle swarm optimization. For given input data SwarmCurves  offers a range of solutions, from linear polygons to rational B-Splines with various degrees of freedom. The algorithm works on dense, sparse or noisy, 2D or 3D input data. We demonstrate the performance of SwarmCurves, on a number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, L., Ghosh, S.K.: Uncertainty quantification and estimation of closed curves based on noisy data. Comput. Stat. 36, 2161–2176 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chiong, R., Weise, T., Michalewicz, Z.: Variants of Evolutionary Algorithms for Real-World Applications. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23424-8

    Book  Google Scholar 

  3. Cipolla, S., Di Fiore, C., Tudisco, F., Zellini, P.: Adaptive matrix algebras in unconstrained minimization. Linear Algebra Appl. 471, 544–568 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Boor, C., Rice, J.R.: Least squares cubic spline approximation i-fixed knots. International Mathematical and Statistical Libraries (1968)

    Google Scholar 

  5. De Boor, C., Rice, J.R.: Least squares cubic spline approximation, ii-variable knots. International Mathematical and Statistical Libraries (1968)

    Google Scholar 

  6. Ebrahimi, A., Loghmani, G.B.: B-spline curve fitting by diagonal approximation BFGS methods. Iran. J. Sci. Technol. Trans. A Sci. 43, 947–958 (2019)

    Article  MathSciNet  Google Scholar 

  7. Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.H.: Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2021)

    Article  Google Scholar 

  8. Farin, G.: Curves and Surfaces for CAGD. Morgan Kaufmann, San Fransisco (2002)

    Google Scholar 

  9. Gálvez, A., Cobo, A., Puig-Pey, J., Iglesias, A.: Particle swarm optimization for Bézier surface reconstruction. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008. LNCS, vol. 5102, pp. 116–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69387-1_13

    Chapter  Google Scholar 

  10. Gálvez, A., Iglesias, A., Cobo, A., Puig-Pey, J., Espinola, J.: Bézier curve and surface fitting of 3D point clouds through genetic algorithms, functional networks and least-squares approximation. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007. LNCS, vol. 4706, pp. 680–693. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74477-1_62

    Chapter  Google Scholar 

  11. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Houssein, E.H., Gad, A.G., Hussain, K., Suganthan, P.N.: Major advances in particle swarm optimization: theory, analysis, and application. Swarm Evol. Comput. 63, 100868 (2021)

    Article  Google Scholar 

  13. Iglesias, A., Gálvez, A., Collantes, M.: Multilayer embedded bat algorithm for B-spline curve reconstruction. Integr. Comput.-Aided Eng. 24(4), 385–399 (2017)

    Article  Google Scholar 

  14. Kaveh, A., Dadras Eslamlou, A.: Water strider algorithm: a new metaheuristic and applications. Structures 25, 520–541 (2020)

    Article  MATH  Google Scholar 

  15. Kavita, K., Navin, R., Madan, A.S.: Piecewise feature extraction and artificial neural networks: an approach towards curve reconstruction. Indian J. Sci. Technol. 9(28), 121–134 (2016)

    Article  Google Scholar 

  16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  17. Lee, I.K.: Curve reconstruction from unorganized points. Comput. Aided Geom. Des. 17(2), 161–177 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, H., Chen, W., Wang, G.: Curve reconstruction based on an interval B-spline curve. Vis. Comput. 21, 418–427 (2005)

    Article  Google Scholar 

  19. Liu, Y., D’Aronco, S., Schindler, K., Wegner, J.D.: PC2WF: 3D wireframe reconstruction from raw point clouds. arXiv preprint arXiv:2103.02766 (2021)

  20. Matveev, A., et al.: DEF: Deep estimation of sharp geometric features in 3D shapes. ACM Trans. Graph. 41(4) (2022)

    Google Scholar 

  21. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  22. Ohrhallinger, S., Peethambaran, J., Parakkat, A.D., Dey, T.K., Muthuganapathy, R.: 2D points curve reconstruction survey and benchmark. In: Computer Graphics Forum, vol. 40, pp. 611–632. Wiley Online Library (2021)

    Google Scholar 

  23. Ostertagová, E.: Modelling using polynomial regression. Procedia Eng. 48, 500–506 (2012). Modelling of Mechanical and Mechatronics Systems

    Google Scholar 

  24. Park, H., Lee, J.: B-spline curve fitting based on adaptive curve refinement using dominant points. Comput. Aided Des. 39, 439–451 (2007)

    Google Scholar 

  25. Park, H.: An error-bounded approximate method for representing planar curves in B-splines. Comput. Aided Geom. Des. 21, 479–497 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shami, T.M., El-Saleh, A.A., Alswaitti, M., Al-Tashi, Q., Summakieh, M.A., Mirjalili, S.: Particle swarm optimization: a comprehensive survey. IEEE Access 10, 10031–10061 (2022)

    Google Scholar 

  27. Song, B., Wang, Z., Zou, L.: An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Appl. Soft Comput. 100, 106960 (2021)

    Article  Google Scholar 

  28. Sun, C., Liu, M., Ge, S.: B-spline curve fitting of hungry predation optimization on ship line design. Appl. Sci. 12(19), 9465 (2022)

    Article  Google Scholar 

  29. Varady, T., Martin, R., Cox, J.: Reverse engineering of geometric models - an introduction. Comput. Aided Des. 29(4), 255–268 (1997)

    Article  Google Scholar 

  30. Wang, X., et al.: PIE-NET: parametric inference of point cloud edges. In: Advances in Neural Information Processing Systems, vol. 33, pp. 20167–20178. Curran Associates, Inc. (2020)

    Google Scholar 

  31. Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3(1), 24–36 (2015)

    Google Scholar 

  32. Ye, Y., Yi, R., Gao, Z., Zhu, C., Cai, Z., Xu, K.: NEF: neural edge fields for 3D parametric curve reconstruction from multi-view images (2023)

    Google Scholar 

  33. Yilmaz, S., Sen, S.: Electric fish optimization: a new heuristic algorithm inspired by electrolocation. Neural Comput. Appl. 32(15), 11543–11578 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Komar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Komar, A., Augsdörfer, U. (2023). SwarmCurves: Evolutionary Curve Reconstruction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14361. Springer, Cham. https://doi.org/10.1007/978-3-031-47969-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47969-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47968-7

  • Online ISBN: 978-3-031-47969-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics