Skip to main content

SODAWideNet - Salient Object Detection with an Attention Augmented Wide Encoder Decoder Network Without ImageNet Pre-training

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14362))

Included in the following conference series:

  • 329 Accesses

Abstract

Developing a new Salient Object Detection (SOD) model involves selecting an ImageNet pre-trained backbone and creating novel feature refinement modules to use backbone features. However, adding new components to a pre-trained backbone needs retraining the whole network on the ImageNet dataset, which requires significant time. Hence, we explore developing a neural network from scratch directly trained on SOD without ImageNet pre-training. Such a formulation offers full autonomy to design task-specific components. To that end, we propose SODAWideNet, an encoder-decoder-style network for Salient Object Detection. We deviate from the commonly practiced paradigm of narrow and deep convolutional models to a wide and shallow architecture, resulting in a parameter-efficient deep neural network. To achieve a shallower network, we increase the receptive field from the beginning of the network using a combination of dilated convolutions and self-attention. Therefore, we propose Multi Receptive Field Feature Aggregation Module (MRFFAM) that efficiently obtains discriminative features from farther regions at higher resolutions using dilated convolutions. Next, we propose Multi-Scale Attention (MSA), which creates a feature pyramid and efficiently computes attention across multiple resolutions to extract global features from larger feature maps. Finally, we propose two variants, SODAWideNet-S (3.03M) and SODAWideNet (9.03M), that achieve competitive performance against state-of-the-art models on five datasets. We provide the code and pre-computed saliency maps here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  2. Deng, R., Shen, C., Liu, S., Wang, H., Liu, X.: Learning to predict crisp boundaries. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 562–578 (2018)

    Google Scholar 

  3. Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421 (2018)

  4. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2net: a new multi-scale backbone architecture. IEEE TPAMI (2020). https://doi.org/10.1109/TPAMI.2019.2938758

    Article  Google Scholar 

  5. Gao, S.-H., Tan, Y.-Q., Cheng, M.-M., Lu, C., Chen, Y., Yan, S.: Highly efficient salient object detection with 100k parameters. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 702–721. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_42

    Chapter  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Hermann, K., Chen, T., Kornblith, S.: The origins and prevalence of texture bias in convolutional neural networks. Adv. Neural. Inf. Process. Syst. 33, 19000–19015 (2020)

    Google Scholar 

  8. Ke, Y.Y., Tsubono, T.: Recursive contour-saliency blending network for accurate salient object detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 2940–2950 (2022)

    Google Scholar 

  9. Lee, M.S., Shin, W., Han, S.W.: Tracer: extreme attention guided salient object tracing network (student abstract). In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 12993–12994 (2022)

    Google Scholar 

  10. Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5455–5463 (2015)

    Google Scholar 

  11. Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2014)

    Google Scholar 

  12. Liu, J.J., Hou, Q., Liu, Z.A., Cheng, M.M.: Poolnet+: exploring the potential of pooling for salient object detection. IEEE TPAMI 45(1), 887–904 (2023). https://doi.org/10.1109/TPAMI.2021.3140168

    Article  Google Scholar 

  13. Liu, N., Han, J., Yang, M.H.: Picanet: learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3089–3098 (2018)

    Google Scholar 

  14. Liu, N., Zhang, N., Wan, K., Shao, L., Han, J.: Visual saliency transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4722–4732 (2021)

    Google Scholar 

  15. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  16. Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: going deeper with nested u-structure for salient object detection, vol. 106, p. 107404 (2020)

    Google Scholar 

  17. Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: Basnet: boundary-aware salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7479–7489 (2019)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 717–729 (2015)

    Article  Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  22. Wang, L., et al.: Learning to detect salient objects with image-level supervision. In: CVPR (2017)

    Google Scholar 

  23. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 568–578 (2021)

    Google Scholar 

  24. Wei, J., Wang, S., Huang, Q.: F\(^3\)net: fusion, feedback and focus for salient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12321–12328 (2020)

    Google Scholar 

  25. Wu, Y.H., Liu, Y., Zhang, L., Cheng, M.M., Ren, B.: EDN: salient object detection via extremely-downsampled network. IEEE Trans. Image Process. 31, 3125–3136 (2022)

    Article  Google Scholar 

  26. Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  27. Xie, C., Xia, C., Ma, M., Zhao, Z., Chen, X., Li, J.: Pyramid grafting network for one-stage high resolution saliency detection. In: CVPR (2022)

    Google Scholar 

  28. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)

    Google Scholar 

  29. Yang, S., Lin, W., Lin, G., Jiang, Q., Liu, Z.: Progressive self-guided loss for salient object detection. IEEE Trans. Image Process. 30, 8426–8438 (2021). https://doi.org/10.1109/TIP.2021.3113794

    Article  Google Scholar 

  30. Yuan, L., et al.: Tokens-to-token vit: training vision transformers from scratch on imagenet. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 558–567 (2021)

    Google Scholar 

  31. Zhang, J., Xie, J., Barnes, N., Li, P.: Learning generative vision transformer with energy-based latent space for saliency prediction. In: 2021 Conference on Neural Information Processing Systems (2021)

    Google Scholar 

  32. Zhuge, M., Fan, D.P., Liu, N., Zhang, D., Xu, D., Shao, L.: Salient object detection via integrity learning. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3738–3752 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Venkata Sai Dulam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dulam, R.V.S., Kambhamettu, C. (2023). SODAWideNet - Salient Object Detection with an Attention Augmented Wide Encoder Decoder Network Without ImageNet Pre-training. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14362. Springer, Cham. https://doi.org/10.1007/978-3-031-47966-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47966-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47965-6

  • Online ISBN: 978-3-031-47966-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics