Skip to main content

Simplifying Process Parameters by Unfolding Algebraic Data Types

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2023 (ICTAC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14446))

Included in the following conference series:

  • 254 Accesses

Abstract

Complex abstract data types are often used to facilitate creating concise models of the behavior of realistic systems. However, static analysis techniques that aim to optimize such models often consider variables of complex types as a single indivisible unit. The use of complex data types thus negatively affects the optimizations that can be performed. In this paper we revisit and extend a technique by Groote and Lisser that can be used to replace a single, complex variable by multiple variables of simpler data types, improving the effectiveness of other static analyzes. We describe the technique in the context of the process algebraic specification language mCRL2, and establish its correctness. We demonstrate using an implementation in the mCRL2 toolset that it sometimes reduces the size of the underlying state spaces, and it typically reduces the verification times when using symbolic model checking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The definition using alternative case placement can be modified to take global variables into account in the same way.

  2. 2.

    The SDs for the only cases where it exceeds 10% of the mean are: fourinarow4-3 standard 1.7, sla7 new.def: 0.3, tictactoe3-3 standard: 2.0, wms standard: 2.5, original: 2.2, new.def: 1.9.

References

  1. Blom, S., Fokkink, W., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol, J.: \(\upmu \)CRL: a toolset for analysing algebraic specifications. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 250–254. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_23

    Chapter  Google Scholar 

  2. Blom, S., van de Pol, J.: Symbolic reachability for process algebras with recursive data types. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 81–95. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85762-4_6

    Chapter  Google Scholar 

  3. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_2

    Chapter  Google Scholar 

  4. Bunte, O., Gool, L.C.M., Willemse, T.A.C.: Formal verification of OIL component specifications using mCRL2. In: ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 231–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2_10

    Chapter  Google Scholar 

  5. Cerf, V., Kahn, R.: A protocol for packet network intercommunication. IEEE Trans. Commun. 22(5), 637–648 (1974). https://doi.org/10.1109/TCOM.1974.1092259

    Article  MATH  Google Scholar 

  6. Groote, J.F., Lisser, B.: Computer assisted manipulation of algebraic process specifications. Technical report SEN-R0117, CWI (2001). https://ir.cwi.nl/pub/4326/

  7. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems. The MIT Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  8. Groote, J.F., Willemse, T.A.C.: Parameterised Boolean equation systems. Theoret. Comput. Sci. 343(3), 332–369 (2005). https://doi.org/10.1016/j.tcs.2005.06.016

    Article  MathSciNet  MATH  Google Scholar 

  9. Groote, J.F., Willemse, T.A.C.: A symmetric protocol to establish service level agreements. Log. Methods Comput. Sci. 16(3) (2020). https://doi.org/10.23638/LMCS-16(3:19)2020

  10. Keiren, J.J.A., Wesselink, W., Willemse, T.A.C.: Liveness analysis for parameterised Boolean equation systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 219–234. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_16

    Chapter  MATH  Google Scholar 

  11. Meijer, J., Kant, G., Blom, S., van de Pol, J.: Read, write and copy dependencies for symbolic model checking. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 204–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13338-6_16

    Chapter  Google Scholar 

  12. Neele, T.: (Re)moving quantifiers to simplify parameterised Boolean equation systems. In: ARQNL 2022, vol. 3326, pp. 64–80. CEUR-WS (2022)

    Google Scholar 

  13. Orzan, S., Wesselink, W., Willemse, T.A.C.: Static analysis techniques for parameterised Boolean equation systems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 230–245. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_22

    Chapter  MATH  Google Scholar 

  14. Remenska, D., Willemse, T.A.C., Verstoep, K., Templon, J., Bal, H.: Using model checking to analyze the system behavior of the LHC production grid. Futur. Gener. Comput. Syst. 29(8), 2239–2251 (2013). https://doi.org/10.1016/j.future.2013.06.004

    Article  Google Scholar 

  15. Stramaglia, A., Keiren, J.J.A.: Formal verification of an industrial UML-like model using mCRL2. In: Groote, J.F., Huisman, M. (eds.) FMICS 2022. LNCS, vol. 13487, pp. 86–102. Springer, LNCS (2022). https://doi.org/10.1007/978-3-031-15008-1_7

    Chapter  Google Scholar 

  16. van de Pol, J., Timmer, M.: State space reduction of linear processes using control flow reconstruction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 54–68. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04761-9_5

    Chapter  Google Scholar 

  17. Van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams. Int. J. Softw. Tools Technol. Transf. 19(6), 675–696 (2017). https://doi.org/10.1007/s10009-016-0433-2

    Article  Google Scholar 

Download references

Acknowledgements

Michel Reniers and Frank Stappers previously described Groote and Lisser’s original definition of parameter unfolding in an unpublished note. Some of our notation is inspired by their note.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Stramaglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stramaglia, A., Keiren, J.J.A., Neele, T. (2023). Simplifying Process Parameters by Unfolding Algebraic Data Types. In: Ábrahám, E., Dubslaff, C., Tarifa, S.L.T. (eds) Theoretical Aspects of Computing – ICTAC 2023. ICTAC 2023. Lecture Notes in Computer Science, vol 14446. Springer, Cham. https://doi.org/10.1007/978-3-031-47963-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47963-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47962-5

  • Online ISBN: 978-3-031-47963-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics