Skip to main content

Explainable Dynamic Ensemble Framework for Classification Based on the Late Fusion of Heterogeneous Multimodal Data

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 824))

Included in the following conference series:

  • 177 Accesses

Abstract

Ensuring precise and reliable classification effectiveness holds paramount importance in essential sectors such as medicine, industry, and healthcare. Machine learning (ML) techniques have evolved in recent years to address the performance, efficiency, and robustness of the applied models. Recent advancements in Machine Learning (ML) techniques have aimed to enhance the performance, efficiency, and robustness of applied models. Ensemble learning has been shown to exhibit superior accuracy, robustness, and generalization capability over classical single ML models in most classification problems. Although dynamic ensembles have extended the performance of static ensembles such as random forest and boosting, current literature on dynamic ensembles primarily focuses on the early fusion of multimodal data. In this study, we present a novel framework that combines dynamic ensemble selection (DES) with a late fusion of heterogeneous multimodal data and model explainability. We evaluated our approach on a classification task of hospital mortality prediction, and our approach achieves a testing accuracy of 90.16%, surpassing existing techniques and providing physicians with case-based reasoning and deep-based classifiers contributions explanations to support their decision-making. We compare our proposed framework against nine widely used ML techniques, including static and dynamic ensemble models with early fusion and static ensemble models with late fusion on a dataset of 6,600 patients from MIT’s GOSSIS dataset. The dynamic ensemble model with early fusion achieves a testing accuracy of 86.89%, the LightGBM model achieves a test accuracy of 87.72%, and the soft voting model reaches 87.97% and 89.45% using early and late fusion, respectively. Our proposed framework not only improves the accuracy and robustness of in-hospital mortality prediction models but also offers explainability and potential for further optimization to achieve even higher performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonaccorso, G.: Machine Learning Algorithms. Packt Publishing Ltd (2017)

    Google Scholar 

  2. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    Article  Google Scholar 

  3. Cao, Y., Geddes, T.A., Yang, J.Y.H., Yang, P.: Ensemble deep learning in bioinformatics. Nat. Mach. Intell. 2(9), 500–508 (2020)

    Google Scholar 

  4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: synthetic minority over-sampling technique: smote. J. Artif. Intell. Res. 16, 321–357 (2002)

    Google Scholar 

  5. Cruz, R.M.O., Hafemann, L.G., Sabourin, R., Cavalcanti., G.D.C.: Deslib: a dynamic ensemble selection library in python. J. Mach. Learn. Res. 21(1), 283–287 (2020)

    Google Scholar 

  6. Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C.: Recent advances and perspectives: dynamic classifier selection. Inf. Fusion 41, 195–216 (2018)

    Google Scholar 

  7. El-Rashidy, N., Abuhmed, T., Alarabi, L., El-Bakry, H.M., Abdelrazek, S., Ali, F., El-Sappagh, S.: Sepsis prediction in intensive care unit based on genetic feature optimization and stacked deep ensemble learning. Neural Computing and Applications, pp. 1–30 (2022)

    Google Scholar 

  8. El-Rashidy, N., El-Sappagh, S., Abuhmed, T., Abdelrazek, S., El-Bakry, H.M.: An improved patient-specific stacking ensemble model: intensive care unit mortality prediction. IEEE Access 8, 133541–133564 (2020)

    Google Scholar 

  9. El-Sappagh, S., Abuhmed, T., Riazul Islam, S.M., Kwak, K.S.: Multimodal multitask deep learning model for alzheimer’s disease progression detection based on time series data. Neurocomputing, 412, 197–215 (2020)

    Google Scholar 

  10. El-Sappagh, S., Ali, F., Abuhmed, F., Singh, J., Alonso, J.M.: Automatic detection of alzheimer’s disease progression: an efficient information fusion approach with heterogeneous ensemble classifiers. Neurocomputing 512, 203–224 (2022)

    Google Scholar 

  11. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)

    MathSciNet  Google Scholar 

  12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  13. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    Article  Google Scholar 

  14. Juraev, F., El-Sappagh, S., Abdukhamidov, E., Ali, F., Abuhmed, T.: Multilayer dynamic ensemble model for intensive care unit mortality prediction of neonate patients. J. Biomed. Inf. 135, 104216 (2022)

    Article  Google Scholar 

  15. Ko, A.H.R., Sabourin, R., Britto Jr, A.S.: From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit. 41(5), 1718–1731 (2008)

    Google Scholar 

  16. Mahesh, B.: Machine learning algorithms-a review. Int. J. Sci. Res. (IJSR).[Internet] 9, 381–386 (2020)

    Google Scholar 

  17. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  18. Raffa, J.D., Johnson, A.E.W., O’Brien, Z., Pollard, T.J., Mark, R.G., Celi, L.A., Pilcher, D., Badawi, O.: The global open source severity of illness score (gossis). Crit. Care Med. 50(7), 1040–1050 (2022)

    Google Scholar 

  19. Raschka, S.: Mlxtend: providing machine learning and data science utilities and extensions to python’s scientific computing stack. J. Open Source Softw. 3(24) (2018)

    Google Scholar 

  20. Ruta, D., Gabrys, B.: Classifier selection for majority voting. Inf. Fusion 6(1), 63–81 (2005)

    Article  Google Scholar 

  21. Sabourin, M., Mitiche, A., Thomas, D., Nagy, G.: Classifier combination for hand-printed digit recognition. In: Proceedings of 2nd international conference on document analysis and recognition (ICDAR’93), pp. 163–166. IEEE (1993)

    Google Scholar 

  22. Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdiscip. Rev.: Data Min. Knowl. Disc. 8(4), e1249 (2018)

    Google Scholar 

  23. Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C.D., Stamatopoulos, P.: Stacking classifiers for anti-spam filtering of e-mail (2001). cs/ arXiv:0106040

    Google Scholar 

  24. Sammut, C., Webb, G.I. (eds.) Holdout Evaluation, pp. 506–507. Springer, US, Boston, MA (2010)

    Google Scholar 

  25. Schapire, R.E.: A brief introduction to boosting. In: Ijcai, vol. 99, pp. 1401–1406. Citeseer (1999)

    Google Scholar 

  26. Stahlschmidt, S.R., Ulfenborg, B., Synnergren, J.: Multimodal deep learning for biomedical data fusion: a review. Briefings Bioinform. 23(2), bbab569 (2022)

    Google Scholar 

  27. Tan, W., Tiwari, P., Pandey, H.M., Moreira, C., Jaiswal, A.M.: Multimodal medical image fusion algorithm in the era of big data. Neural Computing and Applications, pp. 1–21 (2020)

    Google Scholar 

  28. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ICT Creative Consilience Program (IITP-2021-2020-0-01821) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation), and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1011198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer Abuhmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Juraev, F., El-Sappagh, S., Abuhmed, T. (2024). Explainable Dynamic Ensemble Framework for Classification Based on the Late Fusion of Heterogeneous Multimodal Data. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2023. Lecture Notes in Networks and Systems, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-031-47715-7_38

Download citation

Publish with us

Policies and ethics