Skip to main content

Feature Channel Adaptive Enhancement for Fine-Grained Visual Classification

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2023)

Abstract

Fine-grained classification poses greater challenges compared to basic-level image classification due to the visually similar sub-species. To distinguish between confusing species, we introduce a novel framework based on feature channel adaptive enhancement and attention erasure. On one hand, a lightweight module employing both channel attention and spatial attention is designed, adaptively enhancing the feature expression of important areas and obtaining more discriminative feature vectors. On the other hand, we incorporate attention erasure methods that compel the network to concentrate on less prominent areas, thereby enhancing the network’s robustness. Our method can be seamlessly integrated into various backbone networks. Finally, an evaluation of our approach is conducted across diverse public datasets, accompanied by a comprehensive comparative analysis against state-of-the-art methodologies. The experimental findings substantiate the efficacy and viability of our method in real-world scenarios, exemplifying noteworthy breakthroughs in intricate fine-grained classification endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bargal, S.A., et al.: Guided zoom: zooming into network evidence to refine fine-grained model decisions. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 4196–4202 (2021)

    Google Scholar 

  2. Branson, S., Van Horn, G., Belongie, S., Perona, P.: Bird species categorization using pose normalized deep convolutional nets. arXiv preprint arXiv:1406.2952 (2014)

  3. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  4. Ding, Y., Zhou, Y., Zhu, Y., Ye, Q., Jiao, J.: Selective sparse sampling for fine-grained image recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6599–6608 (2019)

    Google Scholar 

  5. Dubey, A., Gupta, O., Guo, P., Raskar, R., Farrell, R., Naik, N.: Pairwise confusion for fine-grained visual classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 70–86 (2018)

    Google Scholar 

  6. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4438–4446 (2017)

    Google Scholar 

  7. Gao, Y., Han, X., Wang, X., Huang, W., Scott, M.: Channel interaction networks for fine-grained image categorization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10818–10825 (2020)

    Google Scholar 

  8. Ghiasi, G., Lin, T.Y., Le, Q.V.: Dropblock: a regularization method for convolutional networks. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  12. Hu, T., Qi, H., Huang, Q., Lu, Y.: See better before looking closer: weakly supervised data augmentation network for fine-grained visual classification. arXiv preprint arXiv:1901.09891 (2019)

  13. Hu, T., Xu, J., Huang, C., Qi, H., Huang, Q., Lu, Y.: Weakly supervised bilinear attention network for fine-grained visual classification. arXiv preprint arXiv:1808.02152 (2018)

  14. Hu, Y., Yang, Y., Zhang, J., Cao, X., Zhen, X.: Attentional kernel encoding networks for fine-grained visual categorization. IEEE Trans. Circuits Syst. Video Technol. 31(1), 301–314 (2020)

    Article  Google Scholar 

  15. Huang, S., Wang, X., Tao, D.: Stochastic partial swap: enhanced model generalization and interpretability for fine-grained recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 620–629 (2021)

    Google Scholar 

  16. Huang, S., Xu, Z., Tao, D., Zhang, Y.: Part-stacked CNN for fine-grained visual categorization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1173–1182 (2016)

    Google Scholar 

  17. Imambi, S., Prakash, K.B., Kanagachidambaresan, G.: Pytorch. Programming with TensorFlow: Solution for Edge Computing Applications, pp. 87–104 (2021)

    Google Scholar 

  18. Jaderberg, M., et al.: Spatial transformer networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  19. Ji, R., et al.: Attention convolutional binary neural tree for fine-grained visual categorization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10468–10477 (2020)

    Google Scholar 

  20. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained image categorization: stanford dogs. In: Proceedings of the CVPR Workshop on Fine-Grained Visual Categorization (FGVC), vol. 2. Citeseer (2011)

    Google Scholar 

  21. Kirkland, E.J., Kirkland, E.J.: Bilinear interpolation. In: Advanced Computing in Electron Microscopy, pp. 261–263 (2010)

    Google Scholar 

  22. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 554–561 (2013)

    Google Scholar 

  23. Lin, D., Shen, X., Lu, C., Jia, J.: Deep lac: deep localization, alignment and classification for fine-grained recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1666–1674 (2015)

    Google Scholar 

  24. Liu, C., Xie, H., Zha, Z.J., Ma, L., Yu, L., Zhang, Y.: Filtration and distillation: enhancing region attention for fine-grained visual categorization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11555–11562 (2020)

    Google Scholar 

  25. Loshchilov, I., Hutter, F.: Sgdr: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  26. Luo, W., et al.: Cross-x learning for fine-grained visual categorization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8242–8251 (2019)

    Google Scholar 

  27. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

  28. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  29. Ouyang, W., et al.: Deepid-net: object detection with deformable part based convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1320–1334 (2016)

    Google Scholar 

  30. Song, J., Yang, R.: Feature boosting, suppression, and diversification for fine-grained visual classification. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  31. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Sun, M., Yuan, Y., Zhou, F., Ding, E.: Multi-attention multi-class constraint for fine-grained image recognition. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 805–821 (2018)

    Google Scholar 

  33. Wang, J., Li, N., Luo, Z., Zhong, Z., Li, S.: High-order-interaction for weakly supervised fine-grained visual categorization. Neurocomputing 464, 27–36 (2021)

    Article  Google Scholar 

  34. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  35. Yang, S., Ramanan, D.: Multi-scale recognition with dag-CNNs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1215–1223 (2015)

    Google Scholar 

  36. Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., Wang, L.: Learning to navigate for fine-grained classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 420–435 (2018)

    Google Scholar 

  37. Zhang, L., Huang, S., Liu, W., Tao, D.: Learning a mixture of granularity-specific experts for fine-grained categorization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8331–8340 (2019)

    Google Scholar 

  38. Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_54

  39. Zhang, T., Chang, D., Ma, Z., Guo, J.: Progressive co-attention network for fine-grained visual classification. In: 2021 International Conference on Visual Communications and Image Processing (VCIP), pp. 1–5. IEEE (2021)

    Google Scholar 

  40. Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5209–5217 (2017)

    Google Scholar 

  41. Zheng, H., Fu, J., Zha, Z.J., Luo, J.: Looking for the devil in the details: learning trilinear attention sampling network for fine-grained image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5012–5021 (2019)

    Google Scholar 

  42. Zhou, M., Bai, Y., Zhang, W., Zhao, T., Mei, T.: Look-into-object: self-supervised structure modeling for object recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11774–11783 (2020)

    Google Scholar 

  43. Zhuang, P., Wang, Y., Qiao, Y.: Learning attentive pairwise interaction for fine-grained classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13130–13137 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Guangxi Science and Technology Project (2021GXNSFBA220035, AD20159034), the Open Funds from Guilin University of Electronic Technology, Guangxi Key Laboratory of Image and Graphic Intelligent Processing (GIIP2208) and the National Natural Science Foundation of China (61962014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, D., Pang, C., Wu, G., Lan, R. (2023). Feature Channel Adaptive Enhancement for Fine-Grained Visual Classification. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14408. Springer, Cham. https://doi.org/10.1007/978-3-031-47665-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47665-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47664-8

  • Online ISBN: 978-3-031-47665-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics