Skip to main content

Edge AI-Based Vein Detector for Efficient Venipuncture in the Antecubital Fossa

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2023)

Abstract

Assessing the condition and visibility of veins is a crucial step before obtaining intravenous access in the antecubital fossa, which is a common procedure to draw blood or administer intravenous therapies (IV therapies). Even though medical practitioners are highly skilled at intravenous cannulation, they usually struggle to perform the procedure in patients with low visible veins due to fluid retention, age, overweight, dark skin tone, or diabetes. Recently, several investigations proposed combining Near Infrared (NIR) imaging and deep learning (DL) techniques for forearm vein segmentation. Although they have demonstrated compelling results, their use has been rather limited owing to the portability and precision needs to perform venipuncture. In this paper, we aim to contribute in bridging this gap using three strategies. First, we introduce a new NIR-based forearm vein segmentation dnataset of 2016 labelled images collected from 1008 subjects with low visible veins. Second, we propose a modified U-Net architecture that locates veins specifically in the antecubital fossa region of the examined patient. Finally, a compressed version of the proposed architecture was deployed inside an bespoke, portable vein finder device after testing four common embedded microcomputers and four common quantization modalities. Experimental results showed that the model compressed with Dynamic Range Quantization and deployed on a Raspberry Pi 4B card produced the best execution time and precision balance, with 5.14 FPS and 0.957 of latency and Intersection over Union (IoU), respectively. These results show promising performance inside a resource-restricted low-cost device. The full implementation and data are available at: https://github.com/EdwinTSalcedo/CUBITAL

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adi Surya Gunawan, I.P., Sigit, R., Gunawan, A.I.: Vein visualization system using camera and projector based on distance sensor. In: 2018 International Electronics Symposium on Engineering Technology and Applications (IES-ETA), pp. 150–156. arXiv, Berlin, October 2018. https://doi.org/10.1109/ELECSYM.2018.8615501

  2. Ai, D., et al.: Augmented reality based real-time subcutaneous vein imaging system. Biomed. Opt. Express. 7(7), 2565–2585 (2016). https://doi.org/10.1364/BOE.7.002565, https://opg.optica.org/boe/abstract.cfm?URI=boe-7-7-2565

  3. Azueto, R., Santiago, G., Hernández, G., Hernández, S.: Implementación de un sistema de imagenología infrarroja para la detección vascular del antebrazo y mano. Revista Mexicana de Ingeniería Biomédica. 1(1), 27–35 (2017). https://www.redalyc.org/articulo.oa?id=61950989005

  4. Chen, Y., et al.: VeniBot: towards autonomous venipuncture with semi-supervised vein segmentation from ultrasound images. In: Arxiv, pp. 150–156. arXiv, Berlin (2021)

    Google Scholar 

  5. Company, A.: Comparing the accuvein av500 vs veinsight vs500 vs aimvein pro 2.0 (2022). https://aimvein.com/blogs/news/compare-model-av500-vs-vs500-vs-pro-2-0

  6. Corzo Gómez, E.G., Gómez Díaz, O.L., Niño Mantilla, M.E., Ramírez Vargas, L.M., Zárate Sierra, L.M.: Distribución de los patrones venosos de la fosa cubital en una muestra de personas nacidas en el departamento de santander, colombia. Int. J. Morphol. 32(1), 221–226 (2014). https://doi.org/10.4067/s0717-95022014000100037

    Article  Google Scholar 

  7. Francisco, M.D., et al.: Competitive real-time near infrared (NIR) vein finder imaging device to improve peripheral subcutaneous vein selection in venipuncture for clinical laboratory testing. Micromachines 12(4), 27–35 (2021). https://doi.org/10.3390/mi12040373

    Article  MathSciNet  Google Scholar 

  8. Fronheiser, M.P., et al.: Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. J. Biomed. Opt. 15(2), 21305 (2010). https://doi.org/10.1117/1.3370336

    Article  Google Scholar 

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). https://doi.org/10.1109/cvpr.2017.632

  10. Kuthiala, A., et al.: U-DAVIS-deep learning based arm venous image segmentation technique for venipuncture. Comput. Intell. Neurosci. 2022, 4559219 (2022). https://doi.org/10.1155/2022/4559219

    Article  Google Scholar 

  11. Lee, J., Jeong, I., Kim, K., Cho, J.: Design and implementation of embedded-based vein image processing system with enhanced denoising capabilities. Sensors 22(21), 887 (2022). https://doi.org/10.3390/s22218559

    Article  Google Scholar 

  12. Leipheimer, J., Balter, M., Chen, A., Yarmush, M.: Design and evaluation of a handheld robotic device for peripheral catheterization. J. Med. Dev. 16(2), 021015 (2022). https://doi.org/10.1115/1.4053688

  13. Li, Y., et al.: A novel method for low-contrast and high-noise vessel segmentation and location in venipuncture. IEEE Trans. Med. Imaging 36(11), 2216–2227 (2017). https://doi.org/10.1109/TMI.2017.2732481

    Article  MathSciNet  Google Scholar 

  14. Naik, V., Mantha, S.P., Rayani, B.: Vascular access in children. Indian J. Anaesth. 63(9), 737 (2019)

    Article  Google Scholar 

  15. Ng, K.W., Furqan, M.S., Gao, Y., Ngiam, K.Y., Khoo, E.T.: Holovein: mixed-reality venipuncture aid via convolutional neural networks and semi-supervised learning. Electronics. 12(2), 292 (2023). https://doi.org/10.3390/electronics12020292, https://www.mdpi.com/2079-9292/12/2/292

  16. Rojas, W., Salcedo, E., Sahonero, G.: ADRAS: airborne disease risk assessment system for closed environments. In: Lossio-Ventura, J.A., Valverde-Rebaza, J., Díaz, E., Alatrista-Salas, H. (eds.) Information Management and Big Data, vol. 1837, pp. 96–112. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-35445-8_8

  17. Shah, Z., et al.: Deep learning-based forearm subcutaneous veins segmentation. IEEE Access 10, 42814–42820 (2022). https://doi.org/10.1109/ACCESS.2022.3167691

    Article  Google Scholar 

  18. Shahzad, A., Walter, N., Malik, A.S., Saad, N.M., Meriaudeau, F.: Multispectral venous images analysis for optimum illumination selection. In: 2013 IEEE International Conference on Image Processing, pp. 2383–2387. ICIP, Berlin, September 2013. https://doi.org/10.1109/ICIP.2013.6738491

  19. Tang, C., Xia, S., Qian, M., Wang, B.: Deep learning-based vein localization on embedded system. IEEE Access 9, 27916–27927 (2021). https://doi.org/10.1109/ACCESS.2021.3058014

    Article  Google Scholar 

  20. Yildiz, M.Z., Boyraz, Ö.F.: Development of a low-cost microcomputer based vein imaging system. Infrared Phys. Technol. 98, 27–35 (2019). https://doi.org/10.1016/j.infrared.2019.02.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Salcedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salcedo, E., Peñaloza, P. (2024). Edge AI-Based Vein Detector for Efficient Venipuncture in the Antecubital Fossa. In: Calvo, H., Martínez-Villaseñor, L., Ponce, H. (eds) Advances in Soft Computing. MICAI 2023. Lecture Notes in Computer Science(), vol 14392. Springer, Cham. https://doi.org/10.1007/978-3-031-47640-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47640-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47639-6

  • Online ISBN: 978-3-031-47640-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics