Skip to main content

Fractal-Based Analysis of Arteriovenous Malformations (AVMs)

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 36))

  • 267 Accesses

Abstract

Arteriovenous malformations (AVMs) are cerebrovascular lesions consisting of a pathologic tangle of the vessels characterized by a core termed the nidus, which is the “nest” where the fistulous connections occur. AVMs can cause headache, stroke, and/or seizures. Their treatment can be challenging requiring surgery, endovascular embolization, and/or radiosurgery as well. AVMs’ morphology varies greatly among patients, and there is still a lack of standardization of angioarchitectural parameters, which can be used as morphometric parameters as well as potential clinical biomarkers (e.g., related to prognosis).

In search of new diagnostic and prognostic neuroimaging biomarkers of AVMs, computational fractal-based models have been proposed for describing and quantifying the angioarchitecture of the nidus. In fact, the fractal dimension (FD) can be used to quantify AVMs’ branching pattern. Higher FD values are related to AVMs characterized by an increased number and tortuosity of the intranidal vessels or to an increasing angioarchitectural complexity as a whole. Moreover, FD has been investigated in relation to the outcome after Gamma Knife radiosurgery, and an inverse relationship between FD and AVM obliteration was found.

Taken altogether, FD is able to quantify in a single and objective value what neuroradiologists describe in qualitative and/or semiquantitative way, thus confirming FD as a reliable morphometric neuroimaging biomarker of AVMs and as a potential surrogate imaging biomarker. Moreover, computational fractal-based techniques are under investigation for the automatic segmentation and extraction of the edges of the nidus in neuroimaging, which can be relevant for surgery and/or radiosurgery planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Shahi R, Warlow C. A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain. 2001;124:1900–26.

    Article  CAS  PubMed  Google Scholar 

  2. Andrade-Souza YM, Zadeh G, Ramani M, Scora D, Tsao MN, Schwartz ML. Testing the radiosurgery-based arteriovenous malformation score and the modified spetzler-martin grading system to predict radiosurgical outcome. J Neurosurg. 2005;103:642–8.

    Article  PubMed  Google Scholar 

  3. Aoki Y, Nakagawa K, Tago M, Terahara A, Kurita H, Sasaki Y. Clinical evaluation of gamma knife radiosurgery for intracranial arteriovenous malformation. Radiat Med. 1996;14:265–8.

    CAS  PubMed  Google Scholar 

  4. Babin D, Spyrantis M, Pizurica A, Philips W. Pixel profiling for extraction of arteriovenous malformation in 3-D CTA images. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5449–52.

    Google Scholar 

  5. Babin D, Pizurica A, Bellens R, De Bock J, Shang Y, Goossens B, et al. Generalized pixel profiling and comparative segmentation with application to arteriovenous malformation segmentation. Med Image Anal. 2012;16:991–1002.

    Article  CAS  PubMed  Google Scholar 

  6. Bollerslev T. Generalized autoregressive conditional heteroskedasticity. J Econ. 1986;31:307–27.

    Article  Google Scholar 

  7. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martin-Landrove M. Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist. 2015;21:30–43.

    Article  PubMed  Google Scholar 

  8. Di Ieva A, Boukadoum M, Lahmiri S, Cusimano MD. Computational analyses of arteriovenous malformations in neuroimaging. J Neuroimaging. 2014;25:354–60.

    Article  PubMed  Google Scholar 

  9. Di Ieva A, Niamah M, Menezes RJ, Tsao M, Krings T, Cho YB, et al. Computational fractal-based analysis of brain arteriovenous malformation angioarchitecture. Neurosurgery. 2014;75:72–9.

    Article  PubMed  Google Scholar 

  10. Di Ieva A, Matula C, Grizzi F, Grabner G, Trattnig S, Tschabitscher M. Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks. World Neurosurg. 2012;77:785.e11–21.

    Article  PubMed  Google Scholar 

  11. Du R, Keyoung HM, Dowd CF, Young WL, Lawton MT. The effects of diffuseness and deep perforating artery supply on outcomes after microsurgical resection of brain arteriovenous malformations. Neurosurgery. 2007;60:638–46; discussion 646–8.

    Article  PubMed  Google Scholar 

  12. Falconer K. Fractal geometry: mathematical foundations and applications. New Jersey: Wiley; 2003.

    Book  Google Scholar 

  13. Flickinger JC, Pollock BE, Kondziolka D, Lunsford LD. A dose-response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys. 1996;36:873–9.

    Article  CAS  PubMed  Google Scholar 

  14. Forkert ND, Illies T, Goebell E, Fiehler J, Saring D, Handels H. Computer-aided nidus segmentation and angiographic characterization of arteriovenous malformations. Int J Comput Assist Radiol Surg. 2013;8:775–86.

    Article  PubMed  Google Scholar 

  15. Forkert ND, Schmidt-Richberg A, Fiehler J, Illies T, Moller D, Saring D, et al. 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights. Magn Reson Imaging. 2013;31:262–71.

    Article  PubMed  Google Scholar 

  16. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143–56.

    Article  CAS  PubMed  Google Scholar 

  17. Kanmani S, Rao CB, Raj B. On the computation of the minkowski dimension using morphological operations. J Microsc. 1993;170:81–5.

    Article  Google Scholar 

  18. Lahmiri S, Boukadoum M, Di Ieva A. Detrended fluctuation analysis of brain hemisphere magnetic resonance imaging to detect cerebral arteriovenous malformations. In: Circuits and Systems (ISCAS), IEEE International Symposium. 2014;2409–2412.

    Google Scholar 

  19. Lopes R, Betrouni N. Fractal and multifractal analysis: a review. Med Image Anal. 2009;13:634–49.

    Article  CAS  PubMed  Google Scholar 

  20. Matsumoto M, Kodama N, Endo Y, Sakuma J, Suzuki K, Sasaki T, et al. Dynamic 3D-CT angiography. AJNR Am J Neuroradiol. 2007;28:299–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. McGee KP, Ivanovic V, Felmlee JP, Meyer FB, Pollock BE, Huston J 3rd. MR angiography fusion technique for treatment planning of intracranial arteriovenous malformations. J Magn Reson Imaging. 2006;23:361–9.

    Article  PubMed  Google Scholar 

  22. Ondra SL, Troupp H, George ED, Schwab K. The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg. 1990;73:387–91.

    Article  CAS  PubMed  Google Scholar 

  23. Pollock BE, Lunsford LD, Kondziolka D, Maitz A, Flickinger JC. Patient outcomes after stereotactic radiosurgery for “operable” arteriovenous malformations. Neurosurgery. 1994;35:1–7; discussion 7–8.

    Article  CAS  PubMed  Google Scholar 

  24. Pruess SA. Some remarks on the numerical estimation of fractal dimension. In: Barton CC, La Pointe PR, editors. Fractals in the earth sciences. New York: Plenum Press; 1995. p. 10.

    Google Scholar 

  25. Reishofer G, Koschutnig K, Enzinger C, Ebner F, Ahammer H. Fractal dimension and vessel complexity in patients with cerebral arteriovenous malformations. PLoS One. 2012;7:e41148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Russo C. Brightness progressive normalization. 2012. Webpage: http://www.fractal-lab.org/Downloads/bpn_algorithm.html. Accessed on Feb 2016.

  27. Spetzler RF, Ponce FA. A 3-tier classification of cerebral arteriovenous malformations. Clinical article. J Neurosurg. 2011;114:842–9.

    Article  PubMed  Google Scholar 

  28. Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65:476–83.

    Article  CAS  PubMed  Google Scholar 

  29. Wu Y, Chang W, Johnson KM, Velikina J, Rowley H, Mistretta C, et al. Fast whole-brain 4D contrast-enhanced MR angiography with velocity encoding using undersampled radial acquisition and highly constrained projection reconstruction: image-quality assessment in volunteer subjects. AJNR Am J Neuroradiol. 2011;32:E47–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Reishofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Ieva, A., Reishofer, G. (2024). Fractal-Based Analysis of Arteriovenous Malformations (AVMs). In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Advances in Neurobiology, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-47606-8_21

Download citation

Publish with us

Policies and ethics