Skip to main content

Moho Mapping of Northern Chile Region Using Receiver Function Analysis and HK Stacking

  • Chapter
  • First Online:
Recent Developments in Earthquake Seismology

Abstract

In this study, Rfpy software is utilized to compute the receiver functions to map Moho in the Northern Chile region. To obtain the teleseismic waveforms within an epicentral distance of 30° to 90°, the Package makes use of the IRIS station database. The receiver functions over stations AC04 and AC05 indicate a low-velocity layer possible area at a shallower depth. Additionally, the delay periods of the Moho Ps phase at various different back azimuths are used to infer the anisotropy or dipping Moho. With the aid of H-K Stacking the receiver functions for Poisson’s ratio and Moho depth were also inverted. Under the AC07 station, which is situated in Caldera, Atacama, a higher Moho depth of 46 km is discovered. This results in a Poisson’s ratio of 0.24. Below the CO10 station, which is in Coquimbo, an extraordinary poisson ratio is found. Accordingly, a Moho depth of 25 km is discovered. Inverting the acquired P-wave receiver functions may effectively determine the S-wave velocity structure below each station. This would aid in enhancing the region’s crustal imaging. Additionally, harmonic decompositions of the receiver functions might be performed to examine the behavior of anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammon, C. J., Randall, G. E., & Zandt, G. (1990). On the nonuniqueness of receiver function inversions. Journal of Geophysical Research: Solid Earth, 95(B10), 15303–15318.

    Article  Google Scholar 

  • Angermann, D., Klotz, J., & Reigber, C. (1999). Space-geodetic estimation of the Nazca-South America Euler vector. Earth and Planetary Science Letters, 171(3), 329–334.

    Article  CAS  Google Scholar 

  • Audet, P. (2015). Layered crustal anisotropy around the San Andreas Fault near Parkfield, California. Journal of Geophysical Research: Solid Earth, 120(5), 3527–3543.

    Article  Google Scholar 

  • Beck, S., Barrientos, S., Kausel, E., & Reyes, M. (1998). Source characteristics of historic earthquakes along the central Chile subduction Askew et Alzone. Journal of South American Earth Sciences, 11(2), 115–129.

    Google Scholar 

  • Bock, G. (1994). Synthetic seismogram images of upper mantle structure: No evidence for a 520‐km discontinuity. Journal of Geophysical Research: Solid Earth, 99(B8), 15843–15851.

    Google Scholar 

  • Bostock, M. G. (1998). Mantle stratigraphy and evolution of the Slave province. Journal of Geophysical Research: Solid Earth, 103(9), 21183–21200.

    Article  Google Scholar 

  • Brooks, B. A., Bevis, M., Smalley, R., Kendrick, E., Manceda, R., Lauría, E., Maturana, R., & Araujo, M. (2003). Crustal motion in the Southern Andes (26°–36°S): Do the Andes behave like a microplate? Geochemistry, Geophysics, Geosystems, 4(10).

    Google Scholar 

  • Burdick, L. J., & Langston, C. A. (1977). Modeling crustal structure through the use of converted phases in teleseismic body-wave forms. Bulletin of the Seismological Society of America, 67(3), 677–691.

    Article  Google Scholar 

  • Cassidy, J. F. (1992). Numerical experiments in broadband receiver function analysis. Bulletin of the Seismological Society of America, 82(3), 1453–1474.

    Google Scholar 

  • Cembrano, J., González, G., Arancibia, G., Ahumada, I., Olivares, V., & Herrera, V. (2005). Fault zone development and strain partitioning in an extensional strike-slip duplex: A case study from the Mesozoic Atacama fault system, Northern Chile. Tectonophysics, 400(1–4), 105–125.

    Article  Google Scholar 

  • Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research, B: Solid Earth, 101(2), 3139–3156.

    Article  CAS  Google Scholar 

  • Comte, D., & Pardo, M. (1991). Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Natural Hazards, 4, 23–44.

    Article  Google Scholar 

  • Frederiksen, A. W., & Bostock, M. G. (2000). Modelling teleseismic waves in dipping anisotropic structures. Geophysical Journal International, 141(2), 401–412.

    Google Scholar 

  • Gardi, A., Lemoine, A., Madariaga, R., Campos, J., & Campos Modeling, J. (2006). Modeling of stress transfer in the Coquimbo region of central Chile. Journal of Geophysical Research: Solid Earth, 111(B4).

    Google Scholar 

  • Haskell, N. A. (1962). Crustal reflection of plane P and SV waves. Journal of Geophysical Research, 67(12), 4751–4768.

    Article  Google Scholar 

  • Holtkamp, S. G., Pritchard, M. E., & Lohman, R. B. (2011). Earthquake swarms in South America. Geophysical Journal International, 187(1), 128–146.

    Article  Google Scholar 

  • Langston, C. A. (1989). Scattering of teleseismic body waves under Pasadena. California. Journal of Geophysical Research, 94(B2), 1935–1951.

    Article  Google Scholar 

  • Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research: Solid Earth, 84(B9), 4749–4762.

    Article  Google Scholar 

  • Levin, V., & Park, J. (1997). P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation. Geophysical Journal International, 131(2), 253–266.

    Google Scholar 

  • Ligorrfa, J. P., & Ammon, C. J. (1999). Iterative deconvolution and receiver-function estimation. In Bulletin of the Seismological Society of America, 89.

    Google Scholar 

  • Lomnitz, C. (2004). Major earthquakes of Chile: A historical survey, 1535-1960. Seismological Research Letters, 75(B3), 368–378.

    Google Scholar 

  • Maurya, S. P., Singh, K. H., Kumar, A., & Singh, N. P. (2018). Reservoir characterization using post-stack seismic inversion techniques based on real coded genetic algorithm. Journal of Geophysics, 39(2).

    Google Scholar 

  • Maurya, S. P., & Singh, N. P. (2018). Application of LP and ML sparse spike inversion with probabilistic neural network to classify reservoir facies distribution-A case study from the Blackfoot field, Canada. Journal of Applied Geophysics, 159, 511–521.

    Article  Google Scholar 

  • Métois, M., Socquet, A., & Vigny, C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. Journal of Geophysical Research: Solid Earth, 117(3).

    Google Scholar 

  • Métois, M., Vigny, C., Socquet, A., Delorme, A., Morvan, S., Ortega, I., & Valderas-Bermejo, C. M. (2013). GPS-derived interseismic coupling on the subduction and seismic hazards in the Atacama region, Chile. Geophysical Journal International, 196(2), 644–655.

    Article  Google Scholar 

  • Niu, F., & Li, J. (2011). Component azimuths of the CEArray stations estimated from P-wave particle motion. Earthquake Science, 24, 3–13.

    Google Scholar 

  • Owens, T. J., Zandt, G., & Taylor, S. R. (1984). Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms. Journal of Geophysical Research: Solid Earth, 89(B9), 7783–7795.

    Article  Google Scholar 

  • Pardo, M., Comte, D., & Monfret, T. (2002). Seismotectonic and stress distribution in the central Chile subduction zone. Journal of South American Earth Sciences, 15(1), 11–22.

    Article  Google Scholar 

  • Porter, R., Zandt, G., & McQuarrie, N. (2011). Pervasive lower-crustal seismic anisotropy in Southern California: Evidence for underplated schists and active tectonics. Lithosphere, 3(3), 201–220.

    Article  Google Scholar 

  • Savage, M. K. (1998). Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand. Journal of Geophysical Research: Solid Earth, 103(B7), 15069–15087.

    Google Scholar 

  • Scheuber, E., & Gonzalez, G. (1999). Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°–26°S): A story of crustal deformation along a convergent plate boundary. Tectonics, 18(5), 895–910.

    Article  Google Scholar 

  • Scheuber, E., Hammerschmidt, K., & Friedrichsen, H. (1995). 40Ar/39Ar and Rb-Sr analyses from ductile shear zones from the Atacama Fault Zone, northern Chile: The age of deformation. Tectonophysics, 250(1-3), 61–87.

    Article  Google Scholar 

  • Schurr, B., & Rietbrock, A. (2004). Deep seismic structure of the Atacama basin, Northern Chile. Geophysical Research Letters, 31(12).

    Google Scholar 

  • Tassara, A., Götze, H. J., Schmidt, S., & Hackney, R. (2006). Three-dimensional density model of the Nazca plate and the Andean continental margin. Journal of Geophysical Research: Solid Earth, 111(B9).

    Google Scholar 

  • Tiwari, A. K., Maurya, S. P., & Singh, N. P. (2018). TEM response of a large loop source over the multilayer earth models. International Journal of Geophysics, 2018.

    Google Scholar 

  • Tkalčić, H., Chen, Y., Liu, R., Zhibin, H., Sun, L., & Chan, W. (2011). Multistep modelling of teleseismic receiver functions combined with constraints from seismic tomography: Crustal structure beneath southeast China. Geophysical Journal International, 187(1), 303–326.

    Article  Google Scholar 

  • Vigny, C., Rudloff, A., Ruegg, J.-C., Madariaga, R., Campos, J., & Alvarez, M. (2009). Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. Physics of the Earth and Planetary Interiors, 175(2), 86–95.

    Article  Google Scholar 

  • Wiggins, R. A., & Clayton, R. W. (1976). Source shape estimation and deconvolution of teleseismic bodywaves. Geophysical Journal of the Royal Astronomical Society, 47(1), 151–177.

    Article  Google Scholar 

  • Zhao, L. S., & Frohlich, C. (1996). Teleseismic body waveforms and receiver structures beneath seismic stations. Geophysical Journal International, 124(2), 525–540.

    Article  Google Scholar 

  • Zhu, L., & Kanamori, H. (2000). Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2), 2969–2980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, A., Kumar, R., Srivastava, D., Singh, R., Singh, A., Maurya, S.P. (2024). Moho Mapping of Northern Chile Region Using Receiver Function Analysis and HK Stacking. In: Kumar, R., Singh, R., Kanhaiya, S., Maurya, S.P. (eds) Recent Developments in Earthquake Seismology. Springer, Cham. https://doi.org/10.1007/978-3-031-47538-2_6

Download citation

Publish with us

Policies and ethics