Skip to main content

Metaverse with the Internet of Things: Convergence of Physical and Cyber Worlds

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2023, Volume 4 (FTC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 816))

Included in the following conference series:

  • 221 Accesses

Abstract

IoT has recently been researched in the Metaverse and the growth of the this will enable the realization of the Metaverse, including vast virtual worlds. This study highlights the IoT applications in the Metaverse, such as sociability, smart cities, collaborative healthcare, and education. We also thoroughly examine the pillar technologies: responsible artificial intelligence (AI) and digital twins that allow augmented reality (AR) and virtual reality (VR) in the IoT inspired Metaverse. We describe the industrial initiatives and the seven essential criteria for creating the Metaverse by the needs of the physical world: immersion, diversity, economy, civility, interaction, authenticity, and independence. Also, to finally realize the fusion of the digital worlds, the significant problems in the IoT inspired Metaverse are described in this survey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slovick, M.: The AR-VR age has begun in health care. https://www.cta.tech/Resources/i3-Magazine/i3-Issues/2020/November-December/The-AR-VR-Age-has-Begun-in-Health-Care. (2020)

  2. (2022, 06) AR and VR in the education market. https://www.marketresearchfuture.com/reports/ar-vr-in-education-market-10834

  3. Kanter, T.G.: The metaverse and extended reality with distributed IoT. IEEE Internet Things Mag. (IoT) (2021)

    Google Scholar 

  4. Pereira, N., et al.: IEEE international symposium on mixed and augmented reality (ISMAR). IEEE 2021, 479–488 (2021)

    Google Scholar 

  5. Sodhro, A.H., Pirbhulal, S., Sangaiah, A.K.: Convergence of IoT and product lifecycle management in medical health care. Futur. Gener. Comput. Syst. 86, 380–391 (2018)

    Article  Google Scholar 

  6. Promwongsa, N., et al.: A comprehensive survey of the tactile internet: state-of-the-art and research directions. IEEE Commun. Surv. Tutorials 23(1), 472–523 (2020)

    Article  Google Scholar 

  7. Aijaz, A., Sooriyabandara, M.: The tactile internet for industries: a review. Proc. IEEE 107(2), 414–435 (2018)

    Article  Google Scholar 

  8. Lu, E., Miller, J., Pereira, N., Rowe, A.: FLASH: Videoembeddable ar anchors for live events. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 489–497. IEEE (2021)

    Google Scholar 

  9. Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT context: a survey on technical features, scenarios, and architectural models. Proc. IEEE 108(10), 1785–1824 (2020)

    Article  Google Scholar 

  10. Steinbach, E., et al.: Haptic codecs for the tactile internet. In: Proceedings of the IEEE, vol. 107, no. 2, pp. 447–470 (2018)

    Google Scholar 

  11. Stojanovic, N., Milenovic, D.: Data-driven digital twin approach for process optimization: An industry use case. In: IEEE International Conference on Big Data (Big Data), pp. 4202–4211. IEEE (2018)

    Google Scholar 

  12. Farsi, M., Daneshkhah, A., Hosseinian-Far, A., Jahankhani, H.: Digital Twin Technologies, and Smart Cities. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18732-3

  13. Thomason, J.: Metahealth-how will the metaverse change health care? J. Metaverse 1(1), 13–16 (2021)

    Google Scholar 

  14. Kye, B., Han, N., Kim, E., Park, Y., Jo, S.: Educational applications of metaverse: possibilities and limitations. J. Educ. Eval. Health Prof. 18, 32 (2021)

    Google Scholar 

  15. Ruohomaki, T., et al.: Smart city platform enabling digital twin. In: 2018 International Conference on Intelligent Systems (IS), pp. 155–161 (2018)

    Google Scholar 

  16. Lee, J.Y.: A study on metaverse hype for sustainable growth. Int. J. Adv. Brilliant Convergence 10(3), 72–80 (2021)

    Google Scholar 

  17. Nalbant, K.G., Uyanik, S.: Computer vision in the metaverse. J. Metaverse 1(1), 9–12 (2021)

    Google Scholar 

  18. Ning, H., et al.: A survey on metaverse: the state-of-theart, technologies, applications, and challenges, arXiv preprint arXiv:2111.09673 (2021)

  19. Maatuk, A.M., Elberkawi, E.K., Aljawarneh, S., Rashaideh, H., Alharbi, H.: The covid-19 pandemic and e-learning: challenges and opportunities from the perspective of students and instructors. J. Comput. High. Educ. 34(1), 21–38 (2022)

    Article  Google Scholar 

  20. Demeke, H.B., et al.: Trends in use of telehealth among health centers during the covid19 pandemic—united states, june 26–november 6, 2020. Morb. Mortal. Wkly Rep. 70(7), 240 (2021)

    Article  Google Scholar 

  21. Hanna, M.G., Ahmed, I., Nine, J., Prajapati, S., Pantanowitz, L.: Augmented reality technology using microsoft hololens in anatomic pathology. Arch. Pathol. Lab. Med. 142(5), 638–644 (2018)

    Article  Google Scholar 

  22. Rajagopal, N., Miller, J., Kumar, K.K.R., Luong, A., Rowe, A.: Improving augmented reality relocalization using beacons and magnetic field maps. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE (2019)

    Google Scholar 

  23. Songlee, H., CI, L.: Research trends on augmented reality education in Korea from 2008 to 2019. J. Educ. Technol. 36, 505–528 (2020)

    Google Scholar 

  24. Curiscope, Virtuali-tee: augmented reality t-shirt. https://www.curiscope.com/

  25. Chang, L., et al.: 6G-enabled edge AI for Metaverse: challenges, methods, and future research directions, arXiv preprint arXiv:2204.06192 (2022)

  26. Meier, C., Saor´ın, J., de Leon, A.B., Cobos, A.G.: Using the ´ roblox video game engine for creating virtual tours and learning about the sculptural heritage. Int. J. Emerg. Tech. Learn. (iJET) 15(20), 268–280 (2020)

    Google Scholar 

  27. Ryskeldiev, B., Ochiai, Y., Cohen, M., Herder, J.: Distributed metaverse: creating decentralized blockchain-based model for peerto-peer sharing of virtual spaces for mixed reality applications. In: Proceedings of the 9th Augmented Human International Conference. New York, NY, USA: Association for Computing Machinery (2018). https://doi.org/10.1145/3174910.3174952

  28. Hou, H.C., Wu, H.: Technology for real estate education and practice: a VR technology perspective. Property Manag. 38(2), 311–324 (2020)

    Google Scholar 

  29. Izani, M., Aalkhalidi, S., Razak, A., Ibrahim, S.: Economical VR/AR method for interior design programme. In: 2022 Advances in Science and Engineering Technology International Conferences (ASET), pp. 1–5, February 2022

    Google Scholar 

  30. Zhang, Y., Yao, L.: How the leading Chinese real estate brokerage transformed into a digital platform business. Strategy Leadersh. 50(1), 119–124 (2021)

    Google Scholar 

  31. Kim, J., Kim, J.: Bim to AR matching technology of building maintenance platform using 5g-based AR (2021)

    Google Scholar 

  32. Kim, J.-G.: A study on metaverse culture contents matching platform. Int. J. Adv. Cult. Technol. 9(3), 232–237 (2021)

    Google Scholar 

  33. Lyttelton, T., Zang, E., Musick, K.: Telecommuting and gender inequalities in parents’ paid and unpaid work before and during the covid-19 pandemic. J. Marriage Fam. 84(1), 230–249 (2022)

    Article  Google Scholar 

  34. Park, S.-M., Kim, Y.-G.: A metaverse: taxonomy, components, applications, and open challenges. IEEE Access 10, 4209–4251 (2022)

    Google Scholar 

  35. Lee, L.-H., et al.: All one needs to know about metaverse: a complete survey on technological singularity, virtual ecosystem, and research agenda, arXiv preprint arXiv:2110.05352 (2021)

  36. Wang, Y., et al.: A survey on metaverse: Fundamentals, security, and privacy, arXiv preprint arXiv:2203.02662 (2022)

  37. Huynh-The, T., Pham, Q.-V., Pham, X.-Q., Nguyen, T. T., Han, Z., Kim, D.-S.: Artificial intelligence for the metaverse: a survey, arXiv preprint arXiv:2202.10336 (2022)

  38. Wu, F., et al.: Towards a new generation of artificial intelligence in china. Nat. Mach. Intell. 2(6), 312–316 (2020)

    Article  Google Scholar 

  39. Fernandez, C.B., Hui, P.: Life, the Metaverse and everything: an overview of privacy, ethics, and governance in Metaverse, arXiv preprint arXiv:2204.01480 (2022)

  40. Dionisio, J.D.N., Burns, W.G., III, Gilbert, R.: 3D virtual worlds and the Metaverse: current status and future possibilities. ACM Comput. Surv. (CSUR) 45(3), 1–38 (2013)

    Google Scholar 

  41. Ynag, Q., Zhao, Y., Huang, H., Zheng, Z.: Fusing blockchain and AI with metaverse: a survey, arXiv preprint arXiv:2201.03201 (2022)

  42. Mozumder, M.A.I., Sheeraz, M.M., Athar, A., Aich, S., Kim, H.-C.: Overview: technology roadmap of the future trend of Metaverse based on IoT, blockchain, AI technique, and medical domain Metaverse activity. In: International Conference on Advanced Communication Technology (ICACT), pp. 256–261. IEEE (2022)

    Google Scholar 

  43. Sharma, R.A., et al.: All that glitters: Lowpower spoof-resilient optical markers for augmented reality. In: ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 289–300. IEEE (2020)

    Google Scholar 

  44. Madhavan, R., Kerr, J.A., Corcos, A.R., Isaacoff, B.P.: Toward trustworthy and responsible artificial intelligence policy development. IEEE Intell. Syst. 35(5), 103–108 (2020)

    Article  Google Scholar 

  45. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Google Scholar 

  46. Werder, K., Ramesh, B., Zhang, R.: Establishing data provenance for responsible artificial intelligence systems. ACM Trans. Manag. Inf. Syst. (TMIS) 13(2), 1–23 (2022)

    Article  Google Scholar 

  47. Wearn, O.R., Freeman, R., Jacoby, D.M.: Responsible AI for conservation. Nat. Mach. Intell. 1(2), 72–77 (2019)

    Google Scholar 

  48. Yigitcanlar, T., et al.: Responsible urban innovation with local government artificial intelligence (AI): a conceptual framework and research agenda. J. Open Innov. Technol. Market Complex. 7(1), 71 (2021)

    Google Scholar 

  49. Mohseni, S., Zarei, N., Ragan, E.D.: A multidisciplinary survey and framework for design and evaluation of explainable AI systems. ACM Tran. Interact. Intell. Syst. (TiiS) 11(3–4), 1–45 (2021)

    Google Scholar 

  50. Thakker, D., Mishra, B.K., Abdullatif, A., Mazumdar, S., Simpson, S.: Explainable artificial intelligence for developing smart cities solutions. Smart Cities 3(4), 1353–1382 (2020)

    Article  Google Scholar 

  51. Han, J., Lee, Y.: Explainable artificial intelligence-based competitive factor identification. ACM Trans. Knowl. Disc. Data (TKDD) 16(1), 1–11 (2021)

    Google Scholar 

  52. Kumar, P., Dwivedi, Y.K., Anand, A.: Responsible artificial intelligence (AI) for value formation and market performance in healthcare: the mediating role of patient’s cognitive engagement. Inf. Syst. Front. 1–24 (2021). https://doi.org/10.1007/s10796-021-10136-6

  53. Vourganas, I., Stankovic, V., Stankovic, L.: Individualised responsible artificial intelligence for home-based rehabilitation. Sensors 21(1), 2 (2020)

    Article  Google Scholar 

  54. Cheng, L., Varshney, K.R., Liu, H.: Socially responsible AI algorithms: issues, purposes, and challenges. J. Artif. Intell. Res. 71, 1137–1181 (2021)

    Article  MathSciNet  Google Scholar 

  55. Khodabandehloo, E., Riboni, D., Alimohammadi, A.: Healthxai: collaborative and explainable AI for supporting early diagnosis of cognitive decline. Futur. Gener. Comput. Syst. 116, 168–189 (2021)

    Article  Google Scholar 

  56. Ahmed, I., Jeon, G., Piccialli, F.: From artificial intelligence to explainable artificial intelligence in industry 4.0: a survey on what, how, and where. IEEE Trans. Ind. Inf. 18(8), 5031–5042 (2022)

    Google Scholar 

  57. Al Hammadi, A.Y., et al.: Explainable artificial intelligence to evaluate industrial internal security using EEG signals in IoT framework. Ad Hoc Networks 123, 102641 (2021)

    Google Scholar 

  58. Tsakiridis, N.L. et al.: Versatile internet of things for agriculture: an eXplainable AI approach. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) Artificial Intelligence Applications and Innovations. AIAI 2020. IFIP Advances in Information and Communication Technology, vol. 584, pp. 180–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49186-4_16

  59. Hossain, M.S., Muhammad, G., Guizani, N.: Explainable AI and mass surveillance system-based healthcare framework to combat covid-i9 like pandemics. IEEE Network 34(4), 126–132 (2020)

    Article  Google Scholar 

  60. Guo, W.: Explainable artificial intelligence for 6g: improving trust between human and machine. IEEE Commun. Mag. 58(6), 39–45 (2020)

    Article  Google Scholar 

  61. Wang, S., et al.: Explainable AI for b5g/6g: Technical aspects, use cases, and research challenges, arXiv preprint arXiv:2112.04698 (2021)

  62. Zhao, Z., Ding, Z., Quek, T.Q., Peng, M.: Edge artificial intelligence in 6G systems: theory, key techniques, and applications. China Communications 17(8), iii–iv (2020)

    Article  Google Scholar 

  63. Lin, Z., Lv, T., Ni, W., Zhang, J.A., Liu, R.P.: Tensorbased multi-dimensional wideband channel estimation for mmwave hybrid cylindrical arrays. IEEE Trans. Commun. 68(12), 7608–7622 (2020)

    Article  Google Scholar 

  64. Mir, T., et al.: Relay hybrid precoding in UAV-assisted wideband millimeter-wave massive mimo system. IEEE Trans. Wirel. Commun. 21, 7040–7054 (2022)

    Google Scholar 

  65. Xiao, C., et al.: Downlink mimo-noma for ultra-reliable low-latency communications. IEEE J. Sel. Areas Commun. 37(4), 780–794 (2019)

    Article  Google Scholar 

  66. Zeng, J., et al.: Ensuring max–min fairness of UL simo-noma: a rate splitting approach. IEEE Trans. Veh. Technol. 68(11), 11080–11093 (2019)

    Google Scholar 

  67. Wang, S., Lv, T., Ni, W., Beaulieu, N.C., Guo, Y.J.: Joint resource management for mc-noma: a deep reinforcement learning approach. IEEE Trans. Wireless Commun. 20(9), 5672–5688 (2021)

    Article  Google Scholar 

  68. Krogfoss, B., Duran, J., Perez, P., Bouwen, J.: Quantifying the value of 5G and edge cloud on QoE for AR/VR. In: International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–4. IEEE (2020)

    Google Scholar 

  69. Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., Zorzi, M.: Toward 6G networks: use cases and technologies. IEEE Commun. Mag. 58(3), 55–61 (2020)

    Article  Google Scholar 

  70. Chen, X., Feng, Z., Wei, Z., Zhang, P., Yuan, X.: Code-division of DM joint communication and sensing system for 6g machine-type communication. IEEE Internet Things J. 8(15), 12093–12105 (2021)

    Google Scholar 

  71. Liu, Y., Peng, M., Shou, G., Chen, Y., Chen, S.: Toward edge intelligence: multiaccess edge computing for 5G and internet of things. IEEE Internet Things J. 7(8), 6722–6747 (2020)

    Article  Google Scholar 

  72. Liao, S., Wu, J., Li, J., Konstantin, K.: Information-centric massive IoT-based ubiquitous connected VR/AR in 6G: A proposed caching consensus approach. IEEE Internet Things J. 8(7), 5172–5184 (2020)

    Article  Google Scholar 

  73. Zhang, S., Liu, J., Guo, H., Qi, M., Kato, N.: Envisioning deviceto-device communications in 6G. IEEE Network 34(3), 86–91 (2020)

    Article  Google Scholar 

  74. Sun, S., Rappaport, T.S., Shafi, M., Tang, P., Zhang, J., Smith, P.J.: Propagation models and performance evaluation for 5G millimeter-wave bands. IEEE Trans. Veh. Technol. 67(9), 8422–8439 (2018)

    Article  Google Scholar 

  75. Prabhakara, A., Singh, V., Kumar, S., Rowe, A.: Osprey: a mmwave approach to tire wear sensing. In: Proceedings of the 18th International Conference on Mobile Systems, Applications, and Services, pp. 28–41 (2020)

    Google Scholar 

  76. Zhang, J., Ge, X., Li, Q., Guizani, M., Zhang, Y.: 5G millimeterwave antenna array: design and challenges. IEEE Wirel. Commun. 24(2), 106–112 (2016)

    Article  Google Scholar 

  77. Dai, J., Zhang, Z., Mao, S., Liu, D.: A view synthesis-based 360 VR caching system over MEC-enabled co-ran. IEEE Trans. Circ. Syst. Video Technol. 30(10), 3843–3855 (2019)

    Google Scholar 

  78. Chen, H.-Y., Hsu, R.-T., Chen, Y.-C., Hsu, W.-C., Huang, P.: AR game traffic characterization: a case of Pokemon go in a flash crowd ´ event. In: Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, pp. 493–494 (2021)

    Google Scholar 

  79. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  80. Zhang, W., Chen, J., Zhang, Y., Raychaudhuri, D.: Towards efficient edge cloud augmentation for virtual reality MMOGs. In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, pp. 1–14 (2017)

    Google Scholar 

  81. Tuli, S., Casale, G., Jennings, N.: MCDs: AI augmented workflow scheduling in mobile edge cloud computing systems. IEEE Trans. Parallel Distrib. Syst. (2021)

    Google Scholar 

  82. Gu, Z., Lu, H., Hong, P., Zhang, Y.: Reliability enhancement for VR delivery in mobile-edge empowered dual-connectivity sub6 GHZ and MMWAVE helmets. IEEE Trans. Wirel. Commun. 21(4), 2210–2226 (2021)

    Google Scholar 

  83. Liu, Y., Liu, J., Argyriou, A., Ci, S.: Mec-assisted panoramic VR video streaming over millimeter wave mobile networks. IEEE Trans. Multimedia 21(5), 1302–1316 (2018)

    Article  Google Scholar 

  84. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in the industry: state-of-the-art. IEEE Trans. Industr. Inf. 15(4), 2405–2415 (2019)

    Article  Google Scholar 

  85. Chen, D., Wang, D., Zhu, Y., Han, Z.: Digital twin for federated analytics using a Bayesian approach. IEEE Internet Things J. 8(22), 16301–16312 (2021)

    Google Scholar 

  86. Rathore, M.M., Shah, S.A., Shukla, D., Bentafat, E., Bakiras, S.: The role of AI, machine learning, and big data in digital twinning: a systematic literature review, challenges, and opportunities. IEEE Access 9, 32030–32052 (2021)

    Google Scholar 

  87. Mirror Worlds: or the Day Software Puts the Universe in a Shoebox...How It Will Happen and What It Will Mean. Oxford University Press

    Google Scholar 

  88. https://www.fortunebusinessinsights.com/digital-twin-market-106246

  89. https://metaverseinsider.tech/2022/03/22/nvidia-announces-new-technology-for-digital-twin-simulation-and-communications-with

  90. https://www.leewayhertz.com/digital-twin/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hassan, A. (2023). Metaverse with the Internet of Things: Convergence of Physical and Cyber Worlds. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2023, Volume 4. FTC 2023. Lecture Notes in Networks and Systems, vol 816. Springer, Cham. https://doi.org/10.1007/978-3-031-47448-4_10

Download citation

Publish with us

Policies and ethics