Skip to main content

Validation of Federated Unlearning on Collaborative Prostate Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Abstract

Machine Unlearning (MU) is an emerging discipline studying methods to remove the effect of a data instance on the parameters of a trained model. Federated Unlearning (FU) extends MU to unlearn the contribution of a dataset provided by a client wishing to drop from a federated learning study. Due to the emerging nature of FU, a practical assessment of the effectiveness of the currently available approaches in complex medical imaging tasks has not been studied so far. In this work, we propose the first in-depth study of FU in medical imaging, with a focus on collaborative prostate segmentation from multi-centric MRI dataset. We first verify the unlearning capabilities of a panel of FU methods from the state-of-the-art, including approaches based on model adaptation, differential privacy, and adaptive retraining. For each method, we quantify their unlearning effectiveness and computational cost as compared to the baseline retraining of a model from scratch after client dropout. Our work highlights a new perspective for the practical implementation of data regulations in collaborative medical imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Accenture/Labs-Federated-Learning/tree/FU_prostate_segmentation.

References

  1. Voigt, P., von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7

    Book  Google Scholar 

  2. Harding, E.L., Vanto, J.J., Clark, R., Hannah Ji, L., Ainsworth, S.C.: Understanding the scope and impact of the California consumer privacy act of 2018. J. Data Protect. Priv. 2(3), 234–253 (2019)

    Google Scholar 

  3. Nguyen, T.T., et al.: A survey of machine unlearning. arXiv (2022)

    Google Scholar 

  4. Brisimi, T.S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I.C., Shi, W.: Federated learning of predictive models from federated electronic health records. Int. J. Med. Inf. 112, 59–67 (2018)

    Article  Google Scholar 

  5. Silva, S., Gutman, B.A., Romero, E., Thompson, P.M., Altmann, A., Lorenzi, M.: Federated learning in distributed medical databases: meta-analysis of large-scale subcortical brain data. In: 2019 IEEE 16th International Symposium on Biomedical Imaging, IEEE (2019)

    Google Scholar 

  6. Liu, G., Ma, X., Yang, Y., Wang, C., Liu, J.: Federaser: enabling efficient client-level data removal from federated learning models. In: 2021 International Symposium on Quality of Service (2021)

    Google Scholar 

  7. Wu, C., Zhu, S., Mitra, P.: Federated unlearning with knowledge distillation. arXiv preprint arXiv:2201.09441 (2022)

  8. Halimi, A., Kadhe, S., Rawat, A., Baracaldo, N.: Federated unlearning: how to efficiently erase a client in FL? arXiv (2022)

    Google Scholar 

  9. Fraboni, Y., Vidal, R., Kameni, L., Lorenzi, M.: Efficient and provable client unlearning in federated optimization, Sequential informed federated unlearning (2022)

    Google Scholar 

  10. LeCun, Y., Bottou, L., Bengio, Y., Ha, P.: LeNet. In: Proceedings of the IEEE (1998)

    Google Scholar 

  11. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  12. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of ICCV 2015 (2015)

    Google Scholar 

  13. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: ICML 2017 (2017)

    Google Scholar 

  14. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg on Non-IID data. In: ICLR 2020 (2020)

    Google Scholar 

  15. Khaled, A., Mishchenko, K., Richtárik, P.: Tighter theory for local SGD on identical and heterogeneous data. In: AISTATS 2020 (2020)

    Google Scholar 

  16. Guo, C., Goldstein, T., Hannun, A., Van Der Maaten, L.: Certified data removal from machine learning models. In: ICML 2020 (2020)

    Google Scholar 

  17. Izzo, Z., Smart, M.A., Chaudhuri, K., Zou, J.: Approximate data deletion from machine learning models. In: AISTATS 2021 (2021)

    Google Scholar 

  18. Golatkar, A., Achille, A., Soatto, S.: Eternal sunshine of the spotless net: selective forgetting in deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  19. Golatkar, A., Achille, A., Soatto, S.: Scrubbing deep networks of information accessible from input-output observations, Forgetting outside the box (2020)

    Google Scholar 

  20. Golatkar, A., Achille, A., Ravichandran, A., Polito, M., Soatto, S.: Mixed-privacy forgetting in deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  21. Mahadevan, A., Mathioudakis, M.: Certifiable machine unlearning for linear models. CoRR, abs/2106.15093 (2021)

    Google Scholar 

  22. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: NeurIPS 2019 (2019)

    Google Scholar 

  23. Neel, S., Roth, A., Sharifi-Malvajerdi, S.: Descent-to-delete: Gradient-based methods for machine unlearning. In: Proceedings of the 32nd International Conference on Algorithmic Learning Theory, PMLR (2021)

    Google Scholar 

  24. Gupta, V., Jung, C., Neel, S., Roth, A., Sharifi-Malvajerdi, S., Waites, C.: Adaptive machine unlearning. In: Advances in Neural Information Processing Systems. Curran Associates Inc (2021)

    Google Scholar 

  25. Liu, Y., Xu, L., Yuan, X., Wang, C., Li, B.: The right to be forgotten in federated learning: an efficient realization with rapid retraining. In: IEEE INFOCOM 2022-IEEE Conference on Computer Communications (2022)

    Google Scholar 

  26. Wang, J., Guo, S., Xie, X., Qi, H.: Federated unlearning via class-discriminative pruning. In: Proceedings of the ACM Web Conference 2022 (2021)

    Google Scholar 

  27. Gao, X., et al.: Towards verifiable federated unlearning. arXiv, Verifi (2022)

    Google Scholar 

  28. Leijie, W., Guo, S., Wang, J., Hong, Z., Zhang, J., Ding, Y.: Federated unlearning: guarantee the right of clients to forget. IEEE Network 36(5), 129–135 (2022)

    Article  Google Scholar 

  29. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    Google Scholar 

  30. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13(1), 4128 (2022)

    Google Scholar 

  31. Koshkin, V.S., et al.: Promise: a real-world clinical-genomic database to address knowledge gaps in prostate cancer. Prostate cancer and prostatic diseases (2022)

    Google Scholar 

  32. Armato, S.G., III., et al.: Prostatex challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images. J. Med. Imaging 5(4), 044501–044501 (2018)

    Article  Google Scholar 

  33. Cuocolo, R., Stanzione, A., Castaldo, A., Lucia, D.R.D., Imbriaco, M.: Quality control and whole-gland, zonal and lesion annotations for the prostatex challenge public dataset. Eur. J. Radiol. 138, 109647 (2021)

    Article  Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Fraboni .

Editor information

Editors and Affiliations

A Additional Experiments and Experimental Details

A Additional Experiments and Experimental Details

Table 4. Hyperparameters fine-tuned to maximise the testing DSC when training with the four centers on a 5 folds cross-validation scenario, and then used for all our learning and unlearning scenario.
Table 5. Hyperparameters values for the different unlearning schemes.
Table 6. Impact of the unlearning budget \((\epsilon , \delta )\) on the difference in utility and unlearning obtained with IFU and Scratch, when unlearning center \(C_2\).
Fig. 2.
figure 2

Prediction Mask on a slice of a sample MRI from center \(C_2\), where FU is applied to the data of \(C_2\).

Fig. 3.
figure 3

Prediction Mask on a slice of a sample MRI from center \(C_3\), where FU is applied to the data of \(C_2\).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fraboni, Y. et al. (2023). Validation of Federated Unlearning on Collaborative Prostate Segmentation. In: Celebi, M.E., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops . MICCAI 2023. Lecture Notes in Computer Science, vol 14393. Springer, Cham. https://doi.org/10.1007/978-3-031-47401-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47401-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47400-2

  • Online ISBN: 978-3-031-47401-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics