Skip to main content

Disassembly Graph Generation and Sequence Planning Based on 3D Models for the Disassembly of Electric Motors

  • Conference paper
  • First Online:
Production at the Leading Edge of Technology (WGP 2023)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

  • 624 Accesses

Abstract

Disassembly is an important first step for new and innovative end-of-life solutions for critical components and materials on the way to a circular economy. Generating possible disassembly sequences and finding optimal sequences for a given disassembly target is a major challenge in disassembly. Using electric traction motors as an example, this paper presents an approach to automatically generate possible disassembly sequences and calculate the optimal path to a given disassembly state. This is based on geometric data in the form of polygon meshes enriched with additional information about non-geometric joints (e.g. adhesive joints). Geometric joints are automatically detected by analysing the contacts between parts. All parts, joints and resulting constraints are modelled in an undirected graph. By analysing the joints and movement constraints, a directed graph is generated. This graph contains all possible disassembly sequences, which can then be searched for an optimal sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calisto Friant, M., Vermeulen, W.J., Salomone, R.: A typology of circular economy discourses: navigating the diverse visions of a contested paradigm. Resour. Conserv. Recycl. 161, 104917 (2020). https://doi.org/10.1016/j.resconrec.2020.104917

    Article  Google Scholar 

  2. Geissdoerfer, M., Pieroni, M.P., Pigosso, D.C., Soufani, K.: Circular business models: a review. J. Clean. Prod. 277, 123741 (2020). https://doi.org/10.1016/j.jclepro.2020.123741

    Article  Google Scholar 

  3. European Commission. Closing the loop: Commission adopts ambitious new Circular Economy Package to boost competitiveness create jobs and generate sustainable growth. Brussels (2015)

    Google Scholar 

  4. Stanek, R., et al.: Wertschöpfungspotenziale von E-Motoren für den Automobilbereich in Baden-Württemberg (2021)

    Google Scholar 

  5. Reuter, B., Hendrich, A., Hengstler, J., Kupferschmid, S., Schwenk, M.: Rohstoffe für innovative Fahrzeugtechnologien: Herausforderungen und Lösungsansätze (2019)

    Google Scholar 

  6. Nordelöf, A., Grunditz, E., Lundmark, S., Tillman, A.-M., Alatalo, M., Thiringer, T.: Life cycle assessment of permanent magnet electric traction motors. Transp. Res. Part D: Transp. Environ. 67, 263–274 (2019). https://doi.org/10.1016/j.trd.2018.11.004

    Article  Google Scholar 

  7. Tiwari, D., Miscandlon, J., Tiwari, A., Jewell, G.W.: A review of circular economy research for electric motors and the role of industry 4.0 technologies. Sustainability 13(17), 9668 (2021). https://doi.org/10.3390/su13179668

    Article  Google Scholar 

  8. Tang, Q., Shu, X., Zhu, G., Wang, J., Yang, H.: Reliability study of BEV powertrain system and its components—a case study. Processes 9(5), 762 (2021). https://doi.org/10.3390/pr9050762

    Article  Google Scholar 

  9. Hansjosten, M., Fleischer, J.: Towards autonomous adaptive disassembly of permanent-magnet synchronous motors with industrial robots. Manuf. Lett. 35(37), 1336–1346 (2023). https://doi.org/10.1016/j.mfglet.2023.08.084

  10. Guo, X., Zhou, M., Abusorrah, A., Alsokhiry, F., Sedraoui, K.: Disassembly sequence planning: a survey. IEEE/CAA J. Autom. Sinica 8(7), 1308–1324 (2021). https://doi.org/10.1109/JAS.2020.1003515

    Article  Google Scholar 

  11. Friedmann T.: Integration von Produktentwicklung und Montageplanung durch neue, rechnergestützte Verfahren [Dissertation]. Karlsruhe: Universität Karlsruhe (1989)

    Google Scholar 

  12. Münker, S., Schmitt, R.H.: CAD-based AND/OR graph generation algorithms in (dis)assembly sequence planning of complex products. Procedia CIRP 106, 144–149 (2022). https://doi.org/10.1016/j.procir.2022.02.169

    Article  Google Scholar 

  13. Prioli, J.P.J., Alrufaifi, H.M., Rickli, J.L.: Disassembly assessment from CAD-based collision evaluation for sequence planning. Robot. Comput.-Integrated Manuf. 78, 102416 (2022). https://doi.org/10.1016/j.rcim.2022.102416

    Article  Google Scholar 

  14. Neb, A., Göke, J.: Generation of assembly restrictions and evaluation of assembly criteria from 3D assembly models by collision analysis. Procedia CIRP 97, 33–38 (2021). https://doi.org/10.1016/j.procir.2020.05.201

    Article  Google Scholar 

  15. Issaoui, L., Aifaoui, N., Benamara, A.: Modelling and implementation of geometric and technological information for disassembly simulation in CAD environment. Int. J. Adv. Manuf. Technol. 89(5–8), 1731–1741 (2017). https://doi.org/10.1007/s00170-016-9128-9

    Article  Google Scholar 

  16. DIN 8593-0:2003-09, Fertigungsverfahren Fügen_- Teil_0: Allgemeines; Einordnung, Unterteilung, Begriffe. Beuth Verlag GmbH, Berlin. https://doi.org/10.31030/9500684

  17. DIN 8593-1:2003-09, Fertigungsverfahren Fügen_- Teil_1: Zusammensetzen; Einordnung, Unterteilung, Begriffe. Beuth Verlag GmbH, Berlin. https://doi.org/10.31030/9500685

  18. DIN 8593-8:2003-09, Fertigungsverfahren Fügen_- Teil_8: Kleben; Einordnung, Unterteilung, Begriffe. Beuth Verlag GmbH, Berlin. https://doi.org/10.31030/9500692

  19. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 269–271 (1959). https://doi.org/10.1145/3544585.3544600

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Hansjosten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hansjosten, M., Fleischer, J. (2024). Disassembly Graph Generation and Sequence Planning Based on 3D Models for the Disassembly of Electric Motors. In: Bauernhansl, T., Verl, A., Liewald, M., Möhring, HC. (eds) Production at the Leading Edge of Technology. WGP 2023. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-47394-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47394-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47393-7

  • Online ISBN: 978-3-031-47394-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics