Skip to main content

Development of a Damped Toolholder for Vibration-Assisted High-Precision Milling Using High Damping Metals

  • Conference paper
  • First Online:
Production at the Leading Edge of Technology (WGP 2023)

Abstract

Ultrasonic vibration-assisted machining (UVAM) is one of the most promising innovations in high precision machining of advanced materials such as titanium alloys for aerospace applications or silicon carbide materials for the semiconductor industry. UVAM improves the process efficiency by increasing tool life through lower cutting forces and temperatures. However, in vibration-assisted milling applications, it is necessary to isolate the spindle system from the vibrations induced by the oscillation actor in order to maintain the long-term accuracy of the machine. This paper presents an innovative approach based on the integration of high damping materials into the toolholder to improve its damping capacity while maintaining the necessary stiffness. Therefore, the tool holder was developed with cylindrical damping inserts in a radial pattern with shrink fit connections. According to the results it was shown that the damping capability of a conventional toolholder can be improved without unacceptably reducing its radial stiffness compared to a standard toolholder geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, C., et al.: An investigation of the high-frequency ultrasonic vibration-assisted cutting of steel optical moulds. MDPI Micromachines 12, 460 (2021)

    Article  Google Scholar 

  2. Bulla, B.: Ultrapräzisionszerspanung von Nanokorn-Hartmetall mit Monokristallinen Diamantwerkzeugen. Apprimus Verlag, Aachen (2013)

    Google Scholar 

  3. Abele, E., Altintas, Y., Brecher, C.: Machine tool spindle units. CIRP Ann. Manuf. Technol. 59, 781–802 (2010)

    Google Scholar 

  4. Homepage SMB Bearings. https://www.smbbearings.com/technical/bearing-noise-vibration.html. Accessed 21 Aug 2023

  5. Lee, H.W., et al.: Modelling ultrasonic vibration fatigue with unified mechanics theory. Int. J. Solids Struct. 236–237 (2022)

    Google Scholar 

  6. Möhring, H.-C., et al.: Materials in machine tool structures. CIRP Ann. Manuf. Technol. 64, 725–748 (2015)

    Google Scholar 

  7. Jehring, U.: Schwingungsdämpfung mit partikelgefüllten Hohlkugeln. Technische Universität Dresden, Dresden (2019)

    Google Scholar 

  8. Vogel, F.A.M., et al.: Vibration supressing in turning TiAl6V4 using additively manufactured tool holders with special structured, particle filled hollow elements. In: 19th Machining Innovations Conference for Aerospace Industry, pp. 32–37. Elsevier, Amsterdam (2019)

    Google Scholar 

  9. Teige, C.: Entwicklung gedämpfter Werkzeugaufnahmen für lang auskragende rotierende Werkzeuge. In: Institut für Fertigungstechnik und Werkzeugmaschinen Leibnitz Universität Hannover, Hannover (2018)

    Google Scholar 

  10. Baur, M.: Aktives Dämpfungssystem zur Ratterunterdrückung an Spanenden Werkzeugmaschinen. Technische Universität München, München (2014)

    Google Scholar 

  11. Werkle, K.T., et al.: Additively manufactured, particle-filled damping structures with magnetorheological fluids. In: 54th CIPP Conference on Manufacturing Systems, pp. 1418–1423. Elsevier, Amsterdam (2021)

    Google Scholar 

  12. Kollmann, F.G.: Praktische Maschinenakustik. Springer, Heidelberg (2005)

    Google Scholar 

  13. Cremer, L., Heckl, M.: Körperschall, 3rd edn. Springer, Heidelberg (2010)

    Google Scholar 

  14. Beards, C.F.: Structural Vibration: Analysis and Damping. Butterworth-Heinemann, Oxford (1996)

    Google Scholar 

  15. Grothe, K.-H., Feldhusen, J.: Dubbel-Taschenbuch für den Maschinenbau, 22nd edn. Springer, Heidelberg (2007)

    Google Scholar 

  16. Lazan, B.J.: Damping of Materials and Members in Structural Mechanics. Pergamon Press, Oxford (1968)

    Google Scholar 

  17. Ilschner, B., Singer, R.F.: Werkstoffwissenschaften und Fertigungstechnik, 4th edn. Springer, Heidelberg (2005)

    Google Scholar 

  18. Hildebrand, M., Adams, R.D.: Vibration damping. In: Adhesive Bonding, 2nd edn. Woodhead Publishing, Sawston (2021)

    Google Scholar 

  19. Niehus, K.K.: Identifikation Linearer Dämpfungsmodelle für Werkzeugmaschinenstrukturen. Technische Universität München, München (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the funding program Zentrales Innovationsprogramm Mittelstand (ZIM) by the Federal Ministry for Economic Affairs and Climate Action (BMWK), Berlin, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Tschöpel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tschöpel, J., Hocke, T., Polte, M., Fleiner, B., Dicke, C., Uhlmann, E. (2024). Development of a Damped Toolholder for Vibration-Assisted High-Precision Milling Using High Damping Metals. In: Bauernhansl, T., Verl, A., Liewald, M., Möhring, HC. (eds) Production at the Leading Edge of Technology. WGP 2023. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-47394-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47394-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47393-7

  • Online ISBN: 978-3-031-47394-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics