Skip to main content

Exploring the Knowledge Distillation

  • Conference paper
  • First Online:
New Technologies, Artificial Intelligence and Smart Data (INTIS 2022, INTIS 2023)

Abstract

Knowledge distillation is a well-known method of model compressing but it is largely under-used. Knowledge distillation has the ability to reduce the size of a model by transferring the knowledge from a large (pre-trained or not) model into a smaller one with minimum loss to the accuracy, for a better fit in edge devices and the devices with low computational power. Furthermore, it can be used also as a performance enhancer for the student model as we’ll see in the experiments since it doesn’t need any additional data to be effective. This paper argues that the knowledge distillation method or one of its variations should always be used on deep learning models. In our experiments we trained and tested our models on some well-known datasets (MNIST, CIFAR10 and CIFAR100) to prove that the knowledge distillation and two of its variations give positive results when applied on over-fitted or under-fitted teacher models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, M., Gupta, S.: To prune or not to prune: exploring the efficacy of pruning for model compression (2017)

    Google Scholar 

  2. Sung, W., Shin, S., Hwang, K.: Resiliency of deep neural networks under quantization (2015)

    Google Scholar 

  3. Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression, vol. 10(1145), pp. 535–541 (2006)

    Google Scholar 

  4. Ba, L.J., Caruana, R.: Do deep nets really need to be deep? Adv. Neural. Inf. Process. Syst. 3, 2654–2662 (2014)

    Google Scholar 

  5. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015)

    Google Scholar 

  6. Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh, H.: Improved knowledge distillation via teacher assistant. In: AAAIth AAAI, editor, AAAI 2020–34th AAAI Conference on Artificial Intelligence, pp. 5191–5198 (2020)

    Google Scholar 

  7. Yuan, L., Tay, F., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation via label smoothing regularization, vol. 10(1109), pp. 3902–3910 (2020)

    Google Scholar 

  8. Krizhevsky, A., Nair, V., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  9. Ding, X., Ding, G., Zhou, X., Guo, Y., Liu, J., Han, J.: Global sparse momentum SGD for pruning very deep neural networks (2019)

    Google Scholar 

  10. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating deep convolutional neural networks, vol. 10(24963), pp. 2234–2240 (2018)

    Google Scholar 

  11. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization: towards lossless CNNs with low-precision weights (2017)

    Google Scholar 

  12. Zhao, Y., Gao, X., Bates, D., Mullins, R.D., Xu, C.: Focused quantization for sparse CNNs. In: NeurIPS (2019)

    Google Scholar 

  13. Wu, J., Leng, C., Wang, Y., Lin, Q., Cheng, J.: Quantized convolutional neural networks for mobile devices (2015)

    Google Scholar 

  14. Zagoruyko, N., Komodakis, S.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer (2016)

    Google Scholar 

  15. Srinivas, S., Fleuret, F.: Knowledge transfer with Jacobian matching (2018)

    Google Scholar 

  16. Li, Z., Hoiem, D.: Learning without forgetting. In: ECCV (2016)

    Google Scholar 

  17. Jang, Y., Lee, H., Hwang, S.J., Shin, J.: Learning what and where to transfer. In: Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Research (2019)

    Google Scholar 

  18. Zhao, H., Sun, X., Dong, J., Chen, C., Dong, Z.: Highlight every step: knowledge distillation via collaborative teaching. IEEE Trans. Cybern. 52, 2070–2081 (2022)

    Article  Google Scholar 

  19. Yuan, F., et al.: Reinforced multi-teacher selection for knowledge distillation (2020)

    Google Scholar 

  20. Nayak, G.K., Mopuri, K.R., Chakraborty, A.: Effectiveness of arbitrary transfer sets for data-free knowledge distillation, vol. 10(1109), pp. 1429–1437 (2021)

    Google Scholar 

  21. Shen, C., Wang, X., Yin, Y., Song, J., Luo, S., Song, M.: Progressive network grafting for few-shot knowledge distillation (2020)

    Google Scholar 

  22. Ye, J., Ji, Y., Wang, X., Gao, X., Song, M.: Data-free knowledge amalgamation via group-stack dual-GAN, vol. 10(1109), pp. 12513–12522 (2020)

    Google Scholar 

  23. Liu, R., Fusi, N., Mackey, L.: Model compression with generative adversarial networks (2018)

    Google Scholar 

  24. Micaelli, P., Storkey, A.: Zero-shot knowledge transfer via adversarial belief matching (2019)

    Google Scholar 

  25. Li, C., et al.: Block-wisely supervised neural architecture search with knowledge distillation (2019)

    Google Scholar 

  26. Peng, H., Du, H., Yu, H., Li, Q., Liao, J., Fu, J.: Cream of the crop: distilling prioritized paths for one-shot neural architecture search (2020)

    Google Scholar 

  27. Kim, J., Bhalgat, Y., Lee, J., Patel, C., Kwak, N.: QKD: quantization-aware knowledge distillation (2019)

    Google Scholar 

  28. Shin, S., Boo, Y., Sung, W.: Knowledge distillation for optimization of quantized deep neural networks, vol. 10(1109), pp. 1–6 (2020)

    Google Scholar 

  29. Roheda, S., Riggan, B., Krim, H., Dai, L.: Cross-modality distillation: a case for conditional generative adversarial networks, vol. 10(1109), pp. 2926–2930 (2018)

    Google Scholar 

  30. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation (2019)

    Google Scholar 

  31. Chen, H., Wang, Y., Xu, C., Tao, D.: Learning student networks via feature embedding. IEEE Trans. Neural Networks Learn. Syst. 10(1109), 1–11 (2020)

    Google Scholar 

  32. Yao, H., et al.: Graph few-shot learning via knowledge transfer (2019)

    Google Scholar 

  33. Meng, Z., Li, J., Zhao, Y., Gong, Y.: Conditional teacher-student learning, vol. 10, p. 1109 (2019)

    Google Scholar 

  34. Chen, D., et al.: AAAI (2021)

    Google Scholar 

  35. Passalis, N., Tzelepi, M., Tefas, A.: Heterogeneous knowledge distillation using information flow modeling (2020)

    Google Scholar 

  36. Zhang, Z., Sabuncu, M.R.: Self-distillation as instance-specific label smoothing (2020)

    Google Scholar 

  37. Mobahi, H., Farajtabar, M., Bartlett, P.: Self-distillation amplifies regularization in Hilbert space (2020)

    Google Scholar 

  38. Kim, K., Ji, B., Yoon, D., Hwang, S.: Self-knowledge distillation: a simple way for better generalization. arXiv:abs/2006.12000 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasssine Khaider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khaider, Y., Rahhali, D., Alami, H., En Nahnahi, N. (2024). Exploring the Knowledge Distillation. In: Tabaa, M., Badir, H., Bellatreche, L., Boulmakoul, A., Lbath, A., Monteiro, F. (eds) New Technologies, Artificial Intelligence and Smart Data. INTIS INTIS 2022 2023. Communications in Computer and Information Science, vol 1728. Springer, Cham. https://doi.org/10.1007/978-3-031-47366-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47366-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47365-4

  • Online ISBN: 978-3-031-47366-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics