Skip to main content

A Reference Meta-model to Understand DNA Variant Interpretation Guidelines

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2023)

Abstract

Determining the role of a DNA variant in patients’ health status – a process known as variant interpretation – is highly critical for precision medicine applications. Variant interpretation involves a complex process where, regrettably, there is still debate on how to combine and weigh diverse available evidence to achieve proper and consistent answers. Indeed, at the time of writing, 22 different variant interpretation guidelines are available to the scientific community, each of them attempting to establish a framework for standardizing the interpretation process. However, these guidelines are qualitative and vague by nature, which hinders their streamlined application and potential automation. Consequently, more precise definitions are needed. Conceptual modeling provides the means to bring clarification within this domain. This paper presents our efforts to define and use a UML meta-model that describes the main concepts involved in the definition of variant interpretation guidelines and the constructs they evaluate. The precise conceptual definition of the guidelines allowed us to identify four common misinterpretation patterns that hamper the correct interpretation process and that can consequently affect classification results. In several proposed examples, the use of the meta-model provides support in identifying the inconsistencies in the observed process; this result paves the way for further proposing reconciliation strategies for the existing guidelines.

M.C. and A.G.S. should be regarded as Joint First Authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/variant.

References

  1. Adadi, A., et al.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Agaoglu, N., et al.: Consistency of variant interpretations among bioinformaticians and clinical geneticists in hereditary cancer panels. Eur. J. Hum. Genet. 30, 378–383 (2022)

    Article  Google Scholar 

  3. Amendola, L.M., et al.: Performance of ACMG-AMP variant-interpretation guidelines among nine laboratories in the clinical sequencing exploratory research consortium. Am. J. Hum. Genet. 98, 1067–1076 (2016)

    Article  Google Scholar 

  4. Amendola, L.M., et al.: Variant classification concordance using the ACMG-AMP variant interpretation guidelines across nine genomic implementation research studies. Am. J. Hum. Genet. 107(5), 932–941 (2020)

    Article  Google Scholar 

  5. Anderson, C., et al.: How functional genomics can keep pace with VUS identification. Front. Cardiovasc. Med. 9 (2022)

    Google Scholar 

  6. Belloir, N., et al.: Characterizing fake news: a conceptual modeling-based approach. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds.) Conceptual Modeling, ER 2022. Lecture Notes in Computer Science, vol. 13607, pp. 115–129. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17995-2_9

    Chapter  Google Scholar 

  7. Bernasconi, A., et al.: A comprehensive approach for the conceptual modeling of genomic data. In: Ralyté, J., et al. (eds.) Conceptual Modeling. Lecture Notes in Computer Science, vol. 13607, pp. 194–208. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17995-2_14

    Chapter  Google Scholar 

  8. Bernasconi, A., et al.: Ontological representation of fair principles: a blueprint for fairer data sources. In: Proceedings of the 35th International Conference on Advanced Information Systems Engineering (CAiSE 2023) (2023)

    Google Scholar 

  9. Bernasconi, A., et al.: Semantic interoperability: ontological unpacking of a viral conceptual model. BMC Bioinform. 23(Suppl 11), 491 (2022)

    Article  Google Scholar 

  10. Booch, G., et al.: The unified modeling language. Unix Rev. 14(13), 5 (1996)

    Google Scholar 

  11. Brnich, S., et al.: Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12, 3 (2019)

    Article  Google Scholar 

  12. Canakoglu, A., et al.: GenoSurf: metadata driven semantic search system for integrated genomic datasets. Database 2019 (2019)

    Google Scholar 

  13. Furqan, A., et al.: Care in specialized centers and data sharing increase agreement in hypertrophic cardiomyopathy genetic test interpretation. Circ. Cardiovasc. Genet. 10(5), e001700 (2017)

    Article  Google Scholar 

  14. Gao, P., et al.: Challenges of providing concordant interpretation of somatic variants in non-small cell lung cancer: a multicenter study. J. Cancer 10(8), 1814–1824 (2019)

    Article  Google Scholar 

  15. García, S.A., et al.: The challenge of managing the evolution of genomics data over time: a conceptual model-based approach. BMC Bioinform. 23(11), 472 (2022)

    Article  Google Scholar 

  16. García, S.A., et al.: An ontological characterization of a conceptual model of the human genome. In: De Weerdt, J., Polyvyanyy, A. (eds.) Intelligent Information Systems, CAiSE 2022. Lecture Notes in Business Information Processing, vol. 452, pp. 27–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07481-3_4

    Chapter  Google Scholar 

  17. Genetics, A.: Scheme for autosomal dominant and x-linked mendelian diseases, Ambry Genetics (2015). https://submit.ncbi.nlm.nih.gov/ft/byid/zfkfvckw/mid-7377_ambry_classification_scheme_oct_2015.pdf. Accessed 24 May 2023

  18. Guidugli, L., et al.: Functional assays for analysis of variants of uncertain significance in BRCA2. Hum. Mutat. 35(2), 151–164 (2014)

    Article  Google Scholar 

  19. Guizzardi, G., Bernasconi, A., Pastor, O., Storey, V.C.: Ontological unpacking as explanation: the case of the viral conceptual model. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 356–366. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_28

    Chapter  Google Scholar 

  20. Guizzardi, R., Bravalheri, A., Guizzardi, G., Sales, T.P., Simeonidou, D.: A reference conceptual model for virtual network function online marketplaces. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 302–310. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_25

    Chapter  Google Scholar 

  21. Harrison, S.M., et al.: Scaling resolution of variant classification differences in ClinVar between 41 clinical laboratories through an outlier approach. Hum. Mutat. 39(11), 1641–1649 (2018)

    Article  Google Scholar 

  22. Harrison, S.M., et al.: Clinical laboratories collaborate to resolve differences in variant interpretations submitted to ClinVar. Genet. Med. 19(10), 1096–1104 (2017)

    Article  Google Scholar 

  23. Karczewski, K.J., et al.: The mutational constraint spectrum quantified from variation in 141, 456 humans. https://doi.org/10.1101/531210

  24. Kim, Y.E., et al.: Challenges and considerations in sequence variant interpretation for mendelian disorders. Ann. Lab. Med. 39, 421 (2019)

    Article  Google Scholar 

  25. Kim, Y.E., et al.: Challenges and considerations in sequence variant interpretation for mendelian disorders. Annals of Laboratory Medicine 39, 421 (09 2019)

    Google Scholar 

  26. Kopanos, C., et al.: VarSome: the human genomic variant search engine. Bioinformatics 35(11), 1978–1980 (2018)

    Article  Google Scholar 

  27. Laddada, W., et al.: OntoRepliCov: an ontology-based approach for modeling the SARS-CoV-2 replication process. Procedia Comput. Sci. 192, 487–496 (2021)

    Article  Google Scholar 

  28. Lebo, M.S., et al.: Data sharing as a national quality improvement program: reporting on BRCA1 and BRCA2 variant-interpretation comparisons through the Canadian open genetics repository (COGR). Genet. Med. 20(3), 294–302 (2018)

    Article  Google Scholar 

  29. Li, Q., et al.: InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am. J. Hum. Genet. 100(2), 267–280 (2017)

    Article  Google Scholar 

  30. Luo, X., et al.: ClinGen myeloid malignancy variant curation expert panel recommendations for germline RUNX1 variants. Blood Adv. 3(20), 2962–2979 (2019)

    Article  Google Scholar 

  31. MacDonald, J.R., et al.: The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 42(D1), D986–D992 (2014)

    Article  Google Scholar 

  32. Martínez Ferrandis, A.M., Pastor López, O., Guizzardi, G.: Applying the principles of an ontology-based approach to a conceptual schema of human genome. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 471–478. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_40

    Chapter  Google Scholar 

  33. Mighton, C., et al.: Data sharing to improve concordance in variant interpretation across laboratories: results from the Canadian open genetics repository. J. Med. Genet. 59(6), 571–578 (2022)

    Article  Google Scholar 

  34. Naithani, N., et al.: Precision medicine: uses and challenges. Med. J. Armed Forces India 77, 258–265 (2021). https://doi.org/10.1016/j.mjafi.2021.06.020

    Article  Google Scholar 

  35. Nicora, G., et al.: CardioVAI: an automatic implementation of ACMG-AMP variant interpretation guidelines in the diagnosis of cardiovascular diseases. Hum. Mutat. 39, 1835–1846 (2018)

    Article  Google Scholar 

  36. Nicora, G., et al.: A machine learning approach based on ACMG/AMP guidelines for genomic variant classification and prioritization. Sci. Rep. 12(1), 2517 (2022)

    Article  Google Scholar 

  37. Niehaus, A., et al.: A survey assessing adoption of the ACMG-AMP guidelines for interpreting sequence variants and identification of areas for continued improvement. Genet. Med. 21(8), 1699–1701 (2019)

    Article  Google Scholar 

  38. Palacio, A.L., et al.: A method to identify relevant genome data: conceptual modeling for the medicine of precision. In: Trujillo, J.C., et al. (eds.) Conceptual Modeling. Lecture Notes in Computer Science, pp. 597–609. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_44

    Chapter  Google Scholar 

  39. Powell, K.: The broken promise that undermines human genome research. Nature 590, 198–201 (2021)

    Article  Google Scholar 

  40. Ramdaney, A., et al.: Beware the laboratory report: discrepancy in variant classification on reproductive carrier screening. Genet. Med. 20, 374–375 (2017)

    Article  Google Scholar 

  41. Reis-Filho, J.S.: Next-generation sequencing. Breast Cancer Res. 11(3), S12 (2009)

    Article  Google Scholar 

  42. Reyes Román, J.F., et al.: Applying conceptual modeling to better understand the human genome. In: Comyn-Wattiau, I., et al. (eds.) Conceptual Modeling. Lecture Notes in Computer Science, pp. 404–412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_31

    Chapter  Google Scholar 

  43. Richards, S., et al.: Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet. Med. 17(5), 405–423 (2015)

    Article  Google Scholar 

  44. Riggs, E., et al.: Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American college of medical genetics and genomics (ACMG) and the clinical genome resource (CLINGEN). Genet. Med. 22, 1–13 (2019)

    Google Scholar 

  45. García, A., et al.: A conceptual model-based approach to improve the representation and management of omics data in precision medicine. IEEE Access 9, 154071–154085 (2021)

    Article  Google Scholar 

  46. Scott, A.D., et al.: CharGer: clinical characterization of germline variants. Bioinformatics 35(5), 865–867 (2019)

    Article  Google Scholar 

  47. Santos, L.O.B.S., et al.: Towards a conceptual model for the fair digital object framework. In: Proceedings of the 13th International Conference on Formal Ontology in Information Systems (FOIS 2023) (2023)

    Google Scholar 

  48. So, M.K., et al.: Reinterpretation of BRCA1 and BRCA2 variants of uncertain significance in patients with hereditary breast/ovarian cancer using the ACMG/AMP 2015 guidelines. Breast Cancer 26, 510–519 (2019)

    Article  Google Scholar 

  49. Tavtigian, S.V., et al.: Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework. Genet. Med. 20(9), 1054–1060 (2018)

    Article  Google Scholar 

  50. Vihinen, M.: Problems in variation interpretation guidelines and in their implementation in computational tools. Mol. Genet. Genom. Med. 8(9), e1206 (2020)

    Article  Google Scholar 

  51. Weiss, A.P., et al.: Toward a comprehensive model of fake news: a new approach to examine the creation and sharing of false information. Societies 11(3), 82 (2021)

    Article  Google Scholar 

  52. Whiffin, N., et al.: Cardioclassifier: disease- and gene-specific computational decision support for clinical genome interpretation. Genet. Med. 20(10), 1246–1254 (2018)

    Article  Google Scholar 

  53. Zeggini, E., et al.: Translational genomics and precision medicine: moving from the lab to the clinic. Science 365(6460), 1409–1413 (2019)

    Article  Google Scholar 

  54. Zhang, J., et al.: The international cancer genome consortium data portal. Nat. Biotechnol. 37(4), 367–369 (2019)

    Article  MathSciNet  Google Scholar 

  55. Zirkelbach, E., et al.: Managing variant interpretation discrepancies in hereditary cancer: clinical practice, concerns, and desired resources. J. Genet. Couns. 27(4), 761–769 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Valencian Innovation Agency and Innovation through the OGMIOS project (INNEST/2021/57), the Generalitat Valenciana through the CoMoDiD project (CIPROM/2021/023) and ACIF/2021/117, and the Spanish State Research Agency through the DELFOS (PDC2021-121243-I00,MICIN/AEI/10.13039/501 100011033) and SREC (PID 2021-123824OB-I00) projects, and co-financed with ERDF and the European Union Next Generation EU/PRTR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireia Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, M., S., A.G., Leon, A., Bernasconi, A., Pastor, O. (2023). A Reference Meta-model to Understand DNA Variant Interpretation Guidelines. In: Almeida, J.P.A., Borbinha, J., Guizzardi, G., Link, S., Zdravkovic, J. (eds) Conceptual Modeling. ER 2023. Lecture Notes in Computer Science, vol 14320. Springer, Cham. https://doi.org/10.1007/978-3-031-47262-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47262-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47261-9

  • Online ISBN: 978-3-031-47262-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics