Skip to main content

Numerical Study on Turbulent Dispersion of Weakly Inertial Particles under Large Temperature Differences

  • Conference paper
  • First Online:
Proceedings of the IUTAM Symposium on Turbulent Structure and Particles-Turbulence Interaction (IUTAM 2023)

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 41))

  • 134 Accesses

Abstract

We study the turbulent dispersion of weakly inertial particles under large temperature differences between the particle cloud and the ambient air. The fast Eulerian method is used to describe the turbulent dispersion of inertial particles at very small Stokes numbers, the low Mach number variable density fluid model is used to simulate the large temperature differences without using the Boussinesq approximation. We simulate the dispersion process of particles under different Reynolds numbers Re, Grashof numbers Gr and Stokes numbers St respectively. The results show that the temperature gradient plays a major role in both horizontal and normal dispersions. The dispersion rate and the rising velocity of the particle cloud are faster for larger Grashof numbers. The incoming flow velocity affects the rates of particle dispersion by changing the temperature distribution. The normal and spanwise dispersion rates are slower, and the streamwise dispersion rate and the streamwise velocity of the particle cloud are faster for larger Reynolds numbers. In the final settling period, the settling velocity of the particle cloud is faster for larger Stokes numbers. Our work is expected to be applied to the dispersion of environmental pollutants and smoke screen under large temperature differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, P., Zheng, B.H., Zheng, J.: Urban PM2.5 diffusion analysis based on the improved gaussian smoke plume model and support vector machine. Aerosol Air Qual. Res. 18(12), 3177–3186 (2018)

    Google Scholar 

  2. Yao, L.J., Gao, J.L., Xiao, K.T., Gong, Y.G.: Theory and Testing Technique of Smoke, 1st edn. National Defense Industry Press, Beijing (2004)

    Google Scholar 

  3. Pope, S.B.: Turbulent Flows, 1st edn. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  4. Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech.. Rev. Fluid Mech. 42, 111–133 (2010)

    Article  MATH  Google Scholar 

  5. Fox, R.O.: Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech.. Rev. Fluid Mech. 44, 47–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sreenivasan, K.R.: Turbulent mixing: a perspective. Proc. Natl. Acad. Sci. 116(37), 18175–18183 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferry, J., Balachandar, S.: A fast Eulerian method for disperse two-phase flow. Int. J. Multiph. FlowMultiph. Flow 27(7), 1199–1226 (2001)

    Article  MATH  Google Scholar 

  8. Derakhti, M., Kirby, J.T.: Bubble entrainment and liquid-bubble interaction under unsteady breaking waves. J. Fluid Mech. 761, 464–506 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Higuera, F.J.: Multifluid Eulerian model of an electrospray in a host gas. J. Fluid Mech. 734, 363–386 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wu, W.X., Wang, B., Xiang, G.M.: Impingement of high-speed cylindrical droplets embedded with an air/vapour cavity on a rigid wall: numerical analysis. J. Fluid Mech. 864, 1058–1087 (2019)

    Article  MathSciNet  Google Scholar 

  11. Xu, Y., Subramaniam, S.: A multiscale model for dilute turbulent gas-particle flows based on the equilibration of energy concept. Phys. Fluids 18(3), 033301 (2006)

    Article  Google Scholar 

  12. Beetham, S., Fox, R.O., Capecelatro, J.: Sparse identification of multiphase turbulence closures for coupled fluid-particle flows. J. Fluid Mech. 914, A11 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Capecelatro, J., Desjardins, O., Fox, R.O.: On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech. 845, 499–519 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Innocenti, A., Marchioli, C., Chibbaro, S.: Lagrangian filtered density function for LES-based stochastic modelling of turbulent particle-laden flows. Phys. Fluids 28(11), 115106 (2016)

    Article  Google Scholar 

  15. Marchioli, C., Fantoni, M., Soldati, A.: Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22(3), 033301 (2010)

    Article  MATH  Google Scholar 

  16. Xu, L.C., Hao, X.Y., Xiao, K.T., Song, W.W., Chen, C.S.: Simulation study of screening efficiency of explosive smoke bomb. Acta Armamentarii 41(7), 1299–1306 (2020)

    Google Scholar 

  17. Minier, J.P., Chibbaro, S., Pope, S.B.: Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Phys. Fluids 26(11), 113303 (2014)

    Article  Google Scholar 

  18. Marchioli, C., Giusti, A., Salvetti, M.V., Soldati, A.: Direct numerical simulation of particle wall transfer and deposition in upward turbulent pipe flow. Int. J. Multiph. FlowMultiph. Flow 29(6), 1017–1038 (2003)

    Article  MATH  Google Scholar 

  19. Maxey, M.R.: The gravitational settling of aerosol-particles in homogeneous turbulence and random flow-fields. J. Fluid Mech. 174, 441–465 (1987)

    Article  MATH  Google Scholar 

  20. Friedlander, S.K.: Smoke, Dust, and Haze, 2nd edn. Oxford University Press, New York (2000)

    Google Scholar 

  21. Dodin, Z., Elperin, T.: On the motion of small heavy particles in an unsteady flow. Phys. Fluids 16(8), 3231–3234 (2004)

    Article  MATH  Google Scholar 

  22. Balkovsky, E., Falkovich, G., Fouxon, A.: Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86(13), 2790–2793 (2001)

    Article  Google Scholar 

  23. Falkovich, G., Pumir, A.: Intermittent distribution of heavy particles in a turbulent flow. Phys. Fluids 16(7), L47–L50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, D., Chen, B.C., Socolofsky, S.A., Chamecki, M., Meneveau, C.: Large-eddy simulation and parameterization of buoyant plume dynamics in stratified flow. J. Fluid Mech. 794, 798–833 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shotorban, B., Balachandar, S.: A Eulerian model for large-eddy simulation of concentration of particles with small Stokes numbers. Phys. Fluids 19(11), 118107 (2007)

    Article  MATH  Google Scholar 

  26. Kays, W.M., Crawford, M.E., Weigand, B.: Convective Heat and Mass Transfer, 4th edn. McGraw-Hill, New York (2004)

    Google Scholar 

  27. Chatterjee, P., Wang, Y., Meredith, K.V., Dorofeev, S.B.: Application of a subgrid soot-radiation model in the numerical simulation of a heptane pool fire. Proc. Combust. Inst. 35, 2573–2580 (2015)

    Article  Google Scholar 

  28. Schatzmann, M., Policastro, A.J.: Effects of the boussinesq approximation on the results of strongly-buoyant plume calculations. J. Climate Appl. Meteorol.Meteorol. 23(1), 117–123 (1984)

    Article  Google Scholar 

  29. Kumar, A.: Effects of the boussinesq approximation on the results of strongly-buoyant plume calculations - comments. J. Climate Appl. Meteorol.Meteorol. 24(7), 735–739 (1985)

    Article  Google Scholar 

  30. Wilcox, D.C.: Turbulence Modeling for CFD, 3rd edn. DCW Industries, California (2006)

    Google Scholar 

  31. Hannappel, R., Hauser, T., Friedrich, R.: A comparison of ENO and TVD schemes for the computation of shock-turbulence interaction. J. Comput. Phys.Comput. Phys. 121(1), 176–184 (1995)

    Article  MATH  Google Scholar 

  32. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 83(1), 32–78 (1989)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC Basic Science Center Program for “Multiscale Prolems in Nonlinear Mechanics” (Grant No. 11988102), the NSFC Program (Grant No. 12272380), the National Key Project (Grant No. GJXM92579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, C., Jin, G. (2024). Numerical Study on Turbulent Dispersion of Weakly Inertial Particles under Large Temperature Differences. In: Zheng, X., Balachandar, S. (eds) Proceedings of the IUTAM Symposium on Turbulent Structure and Particles-Turbulence Interaction. IUTAM 2023. IUTAM Bookseries, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-031-47258-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47258-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47257-2

  • Online ISBN: 978-3-031-47258-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics