Skip to main content

Disassembly 4.0: A Pragmatic Approach to Achieve Sustainability in Engineering

  • Chapter
  • First Online:
Sustainable Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 172 Accesses

Abstract

This chapter explains in brief what is needed to achieve more sustainable manufacturing processes. It develops both aspects of sustainable, economic, and technical feasibility with most focus on the latter. Remanufacturing processes are described together with relevant factors that enhance their effectivity and efficiency. An overview is given of what kind of shopfloor innovations are required in the near future and some suggestions on how digital and other Industry 4.0 technologies could help to move toward circular manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood, J. M., Ashby, M. F., Gutowski, T. G., & Worrell, E. (2011). Material efficiency: A white paper. Resources, Conservation and Recycling, 55(3), 362–381. https://doi.org/10.1016/j.resconrec.2010.11.002

  • Bakker, C., den Hollander, M., Peck, D., & Balkenende, R. (2019). Circular Product Design: Addressing Critical Materials through Design (pp. 179–192). https://doi.org/10.1142/9789813271050_0009

  • Bentaha, M.-L., Marangé, P., Voisin, A., & Moalla, N. (2022). End-of-Life product quality management for efficient design of disassembly lines under uncertainty. International Journal of Production Research, 1–22. https://doi.org/10.1080/00207543.2022.2028199

  • Blümel, R., & Raatz, A. (2022). Research on Gentle Loosening of Solidified Bolted Joints for Complex Capital Goods. Procedia CIRP, 105, 541–546. https://doi.org/10.1016/j.procir.2022.02.090

  • Boorsma, N., Peck, D., Fischer, S., Bakker, C., & Balkenende, R. (2018). Capabilities required to tackle barriers to remanufacturing. In B. Kopacek (Ed.), Proceedings of the Conference Going Green – CARE INNOVATION 2018, pp. 1–12.

    Google Scholar 

  • Bracquené, E., Peeters, J., Alfieri, F., Sanfélix, J., Duflou, J., Dewulf, W., & Cordella, M. (2021). Analysis of evaluation systems for product repairability: A case study for washing machines. Journal of Cleaner Production, 281, 125122. https://doi.org/10.1016/j.jclepro.2020.125122

  • Cannas, V. G., Masi, A., Pero, M., & Brunø, T. D. (2022). Implementing configurators to enable mass customization in the Engineer-to-Order industry: a multiple case study research. Production Planning & Control, 33(9–10), 974–994. https://doi.org/10.1080/09537287.2020.1837941

  • Circle Economy (2021) Circularity Gap Report. (2021). Circularity-gap.world

    Google Scholar 

  • Dalhammer, C. , Hartman, C. , Larsson, J. , Jarelin, J., Milios, L. , & Mont, O. (2022). Moving away from the throwaway society. Five policy instruments for extending the life of consumer durables.

    Google Scholar 

  • Dangal, S., Faludi, J., & Balkenende, R. (2022). Design Aspects in Repairability Scoring Systems: Comparing Their Objectivity and Completeness. Sustainability, 14(14), 8634. https://doi.org/10.3390/su14148634

  • de Fazio, F., Bakker, C., Flipsen, B., & Balkenende, R. (2021). The Disassembly Map: A new method to enhance design for product repairability. Journal of Cleaner Production, 320, 128552. https://doi.org/10.1016/j.jclepro.2021.128552

  • Eijsbouts, R. J. J., & Jehee, W. (2021). Roadmap circulaire fotovoltaische industrie. www.wecycle.nl

  • Goodall, P., Rosamond, E., & Harding, J. (2014). A review of the state of the art in tools and techniques used to evaluate remanufacturing feasibility. Journal of Cleaner Production, 81, 1–15. https://doi.org/10.1016/j.jclepro.2014.06.014

  • Iacovidou, E., Velis, C. A., Purnell, P., Zwirner, O., Brown, A., Hahladakis, J., Millward-Hopkins, J., & Williams, P. T. (2017). Metrics for optimising the multi-dimensional value of resources recovered from waste in a circular economy: A critical review. Journal of Cleaner Production, 166, 910–938. https://doi.org/10.1016/j.jclepro.2017.07.100

  • Jeandin, T., & Mascle, C. (2016). A New Model to Select Fasteners in Design for Disassembly. Procedia CIRP, 40, 425–430. https://doi.org/10.1016/j.procir.2016.01.084

  • Li, H., Sun, H., Fan, F., Liu, H., Li, L., & Yin, F. (2022). Research on an intelligent disassembling method for multi-type mobile phones based on rough set theory. Procedia CIRP, 105, 547–552. https://doi.org/10.1016/j.procir.2022.02.091

  • Li, J., Barwood, M., & Rahimifard, S. (2018). Robotic disassembly for increased recovery of strategically important materials from electrical vehicles. Robotics and Computer-Integrated Manufacturing, 50, 203–212. https://doi.org/10.1016/j.rcim.2017.09.013

  • Nasr, N., Russell, J., Bringezu, S., Hellweg, S., Hilton, B., Kreiss, C., & von Gries, N. (2019). A Report of the International Resource Panel. United Nations Environment Programme.

    Google Scholar 

  • Parsa, S., & Saadat, M. (2021). Human-robot collaboration disassembly planning for end-of-life product disassembly process. Robotics and Computer-Integrated Manufacturing, 71, 102170. https://doi.org/10.1016/j.rcim.2021.102170

  • Peeters J.R., (2018). eDIM: further development of the method to assess the ease of disassembly and reassembly of products — Application to notebook computers.

    Google Scholar 

  • Ramírez, F. J., Aledo, J. A., Gamez, J. A., & Pham, D. T. (2020). Economic modelling of robotic disassembly in end-of-life product recovery for remanufacturing. Computers & Industrial Engineering, 142, 106339. https://doi.org/10.1016/j.cie.2020.106339

  • Riggs, R. J., Battaïa, O., & Hu, S. J. (2015). Disassembly line balancing under high variety of end of life states using a joint precedence graph approach. Journal of Manufacturing Systems, 37, 638–648. https://doi.org/10.1016/j.jmsy.2014.11.002

  • Singhal, D., Tripathy, S., & Jena, S. K. (2020). Remanufacturing for the circular economy: Study and evaluation of critical factors. Resources, Conservation and Recycling, 156, 104681. https://doi.org/10.1016/j.resconrec.2020.104681

  • Stahel, W. R. (2010). The Performance Economy. Palgrave Macmillan UK. https://doi.org/10.1057/9780230274907

  • Vanegas, P., Peeters, J. R., Cattrysse, D., Tecchio, P., Ardente, F., Mathieux, F., Dewulf, W., & Duflou, J. R. (2018). Ease of disassembly of products to support circular economy strategies. Resources, Conservation and Recycling, 135, 323–334. https://doi.org/10.1016/j.resconrec.2017.06.022

  • Xiao, L., Liu, W., Guo, Q., Gao, L., Zhang, G., & Chen, X. (2018). Comparative life cycle assessment of manufactured and remanufactured loading machines in China. Resources, Conservation and Recycling, 131, 225–234. https://doi.org/10.1016/j.resconrec.2017.12.021

  • Zhang, X., Tang, Y., Zhang, H., Jiang, Z., & Cai, W. (2021). Remanufacturability evaluation of end-of-life products considering technology, economy and environment: A review. Science of The Total Environment, 764, 142922. https://doi.org/10.1016/j.scitotenv.2020.142922

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Coenen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coenen, J. (2024). Disassembly 4.0: A Pragmatic Approach to Achieve Sustainability in Engineering. In: Dunmade, I.S., Daramola, M.O., Iwarere, S.A. (eds) Sustainable Engineering. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-47215-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47215-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47214-5

  • Online ISBN: 978-3-031-47215-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics