Skip to main content

Decoupled Fitness Criteria for Reactive Systems

  • Conference paper
  • First Online:
Software Engineering and Formal Methods (SEFM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14323))

Included in the following conference series:

Abstract

The correctness problem for reactive systems has been thoroughly explored and is well understood. Meanwhile, the efficiency problem for reactive systems has not received the same attention. Indeed, one correct system may be less fit than another correct system and determining this manually is challenging and often done ad hoc. We (1) propose a novel and general framework which automatically assigns comparable fitness scores to reactive systems using interpretable parameters that are decoupled from the system being evaluated, (2) state the computational problem of evaluating this fitness score and reduce this problem to a matrix analysis problem, (3) discuss symbolic and numerical methods for solving this matrix analysis problem, and (4) illustrate our approach by evaluating the fitness of nine systems across three case studies, including the Alternating Bit Protocol and Two Phase Commit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Slight generalizations to the framework, omitted here for the sake of simplicity, are able to capture, e.g., aggregates that output tuples of rational numbers [22].

References

  1. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almagor, S., Alur, R., Bansal, S.: Equilibria in quantitative concurrent games. eprint arXiv:1809.10503 (2018)

  3. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 15–27. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_3

    Chapter  MATH  Google Scholar 

  4. Almagor, S., Kuperberg, D., Kupferman, O.: Regular sensing. In: FSTTCS. LIPIcs, vol. 29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

    Google Scholar 

  5. Alur, R., Martin, M., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa, A.: Synthesizing finite-state protocols from scenarios and requirements. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 75–91. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13338-6_7

    Chapter  Google Scholar 

  6. Alur, R., Tripakis, S.: Automatic synthesis of distributed protocols. SIGACT News 48(1), 55–90 (2017)

    Article  MathSciNet  Google Scholar 

  7. Anevlavis, T., Philippe, M., Neider, D., Tabuada, P.: Being correct is not enough: efficient verification using robust linear temporal logic. ACM Trans. Comput. Log. 23(2), 8:1–8:39 (2022)

    Google Scholar 

  8. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation and model checking join forces. Commun. ACM 53(9), 76–85 (2010)

    Article  Google Scholar 

  9. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  10. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. In: Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_28

    Chapter  MATH  Google Scholar 

  11. Beg, O.A., Nguyen, L.V., Johnson, T.T., Davoudi, A.: Signal temporal logic-based attack detection in DC microgrids. IEEE Trans. Smart Grid 10(4), 3585–3595 (2019)

    Article  Google Scholar 

  12. Bortolussi, L., Gallo, G.M., Křetínský, J., Nenzi, L.: Learning model checking and the kernel trick for signal temporal logic on stochastic processes. In: Learning model checking and the kernel trick for signal temporal logic on stochastic processes. LNCS, vol. 13243, pp. 281–300. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_15

    Chapter  Google Scholar 

  13. Bouyer, P., Gardy, P., Markey, N.: Quantitative verification of weighted kripke structures. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 64–80. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_6

    Chapter  MATH  Google Scholar 

  14. Brihaye, T., Geeraerts, G., Haddad, A., Monmege, B., Pérez, G.A., Renault, G.: Quantitative games under failures. In: FSTTCS. Leibniz International Proceedings in Informatics (LIPIcs), vol. 45, pp. 293–306. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

    Google Scholar 

  15. Bucci, G., Sassoli, L., Vicario, E.: A discrete time model for performance evaluation and correctness verification of real time systems. In: 10th International Workshop on Petri Nets and Performance Models, 2003. Proceedings, pp. 134–143 (2003)

    Google Scholar 

  16. Bucci, G., Sassoli, L., Vicario, E.: Correctness verification and performance analysis of real-time systems using stochastic preemptive time petri nets. IEEE Trans. Softw. Eng. 31(11), 913–927 (2005)

    Article  Google Scholar 

  17. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 3rd edn. Springer (2021). https://doi.org/10.1007/978-0-387-68612-7

  18. Cauchi, N., Hoque, K.A., Abate, A., Stoelinga, M.: Efficient probabilistic model checking of smart building maintenance using fault maintenance trees. eprint arXiv:1801.04263 (2018)

  19. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantitative synthesis for concurrent programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 243–259. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_20

    Chapter  Google Scholar 

  20. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput. Log. 11(4) (2010)

    Google Scholar 

  21. Chatterjee, K., de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Compositional quantitative reasoning. In: QEST, pp. 179–188. IEEE Computer Society (2006)

    Google Scholar 

  22. Egolf, D., Tripakis, S.: Decoupled fitness criteria for reactive systems. eprint arXiv: 2212.12455 (2023)

  23. Egolf, D., Tripakis, S.: Decoupled Fitness Criteria for Reactive Systems (Artifact, SEFM 2023) (2023). https://doi.org/10.5281/zenodo.8168367

  24. Egolf, D., Tripakis, S.: Synthesis of distributed protocols by enumeration modulo isomorphisms. In: ATVA. Springer (2023)

    Google Scholar 

  25. Fakih, M., Grüttner, K., Fränzle, M., Rettberg, A.: Towards performance analysis of SDFGs mapped to shared-bus architectures using model-checking. In: DATE, pp. 1167–1172. EDA Consortium San Jose, CA, USA/ACM DL (2013)

    Google Scholar 

  26. Ferrère, T., Maler, O., Ničković, D.: Mixed-time signal temporal logic. In: André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS, vol. 11750, pp. 59–75. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29662-9_4

    Chapter  Google Scholar 

  27. Finkbeiner, B., Fränzle, M., Kohn, F., Kröger, P.: A truly robust signal temporal logic: monitoring safety properties of interacting cyber-physical systems under uncertain observation. Algorithms 15(4) (2022)

    Google Scholar 

  28. Ghabbour, R.R., Abdelgaliel, I.H., Hanna, M.T.: A directed graph and MATLAB generation of the Jordan canonical form for a class of zero-one matrices. In: ICENCO, vol. 1, pp. 86–91 (2022)

    Google Scholar 

  29. Gruntz, D.W.: On Computing Limits in a Symbolic Manipulation System. Ph.D. thesis (1996)

    Google Scholar 

  30. Guan, N., Yi, W.: Finitary real-time calculus: efficient performance analysis of distributed embedded systems. In: RTSS, pp. 330–339 (2013)

    Google Scholar 

  31. Hefferon, J.: Linear Algebra, pp. 440-463 (2020). https://hefferon.net/

  32. Henzinger, T.A.: Quantitative reactive modeling and verification. Comput. Sci. Res. Dev. 28(4), 331–344 (2013). https://doi.org/10.1007/s00450-013-0251-7

    Article  Google Scholar 

  33. Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_31

    Chapter  Google Scholar 

  34. Kempf, J.-F., Bozga, M., Maler, O.: Performance evaluation of schedulers in a probabilistic setting. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24310-3_1

    Chapter  MATH  Google Scholar 

  35. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Formal Methods Syst. Des. 29(1), 33–78 (2006)

    Article  MATH  Google Scholar 

  36. Larsen, K.G.: Automatic verification, performance analysis, synthesis and optimization of timed systems. In: TIME, pp. 1–1 (2016)

    Google Scholar 

  37. Lawler, E.L.: Optimal cycles in graphs and the minimal cost-to-time ratio problem. Tech. Rep. UCB/ERL M343, EECS Department, UC, Berkeley (1972)

    Google Scholar 

  38. Lu, Q., Madsen, M., Milata, M., Ravn, S., Fahrenberg, U., Larsen, K.G.: Reachability analysis for timed automata using max-plus algebra. J. Logic Algebraic Program. 81(3), 298–313 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualitative and quantitative trace analysis with extended signal temporal logic. Int. J. Softw. Tools Technol. Transfer 22(6), 741–758 (2020). https://doi.org/10.1007/s10009-020-00582-z

    Article  Google Scholar 

  40. Prabhakar, P., Lal, R., Kapinski, J.: Automatic trace generation for signal temporal logic. In: RTSS, pp. 208–217 (2018)

    Google Scholar 

  41. Puranic, A.G., Deshmukh, J.V., Nikolaidis, S.: Learning from demonstrations using signal temporal logic. eprint arXiv:2102.07730 (2021)

  42. Salamati, A., Soudjani, S., Zamani, M.: Data-driven verification of stochastic linear systems with signal temporal logic constraints. Automatica 131, 109781 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tabuada, P., Neider, D.: Robust linear temporal logic. In: EACSL, LIPIcs, vol. 62. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

    Google Scholar 

  44. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard real-time systems. In: ISCAS, pp. 101–104 (2000)

    Google Scholar 

  45. Wandeler, E., Thiele, L.: Performance analysis of distributed embedded systems. In: Embedded Systems Handbook. CRC Press (2005)

    Google Scholar 

Download references

Acknowledgements

Derek Egolf’s research has been initially supported by a Northeastern University PhD fellowship. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (1938052). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. We thank the anonymous reviewers for their helpful comments and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Egolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Egolf, D., Tripakis, S. (2023). Decoupled Fitness Criteria for Reactive Systems. In: Ferreira, C., Willemse, T.A.C. (eds) Software Engineering and Formal Methods. SEFM 2023. Lecture Notes in Computer Science, vol 14323. Springer, Cham. https://doi.org/10.1007/978-3-031-47115-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47115-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47114-8

  • Online ISBN: 978-3-031-47115-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics