Skip to main content

Similarity Search with Multiple-Object Queries

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2023)

Abstract

Within the topic of similarity search, all work we know assumes that search is based on a dissimilarity space, where a query comprises a single object in the space.

Here, we examine the possibility of a multiple-object query. There are at least three circumstances where this is useful. First, a user may be seeking results that are more specific than can be captured by a single query object. For example a query image of a yellow hot-air balloon may return other round, yellow objects, and could be specialised by a query using several hot-air balloon images. Secondly, a user may be seeking results that are more general than can be captured by a single query. For example a query image of a Siamese cat may return only other Siamese cats, and could be generalised by a query using several cats of different types. Finally, a user may be seeking objects that are in more than a single class. For example, for a user seeking images containing both hot-air balloons and cats, a query could comprise a set of images each of which contains one or other of these items, in the hope that the results will contain both.

We give an analysis of some different mathematical frameworks which capture the essence of these situations, along with some practical examples in each framework. We report some significant success, but also a number of interesting and unresolved issues. To exemplify the concepts, we restrict our treatment to image embeddings, as they are highly available and the outcomes are visually evident. However the underlying concepts transfer to general search, independent of this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We describe the data set and how these categorisations were made later in the paper.

  2. 2.

    Note that this definition encompasses both range and nearest-neighbour search.

  3. 3.

    As for full generality we do not wish to exclude repeated elements, we are really discussing bags rather than sets.

  4. 4.

    defined by \(H(v) = -\sum _i{v_i \ln v_i}\).

  5. 5.

    A simplex is an object constructed from a set of points in n-dimensional space, by considering each point as a vertex which is joined to all of the other points. For example, a tetrahedron is a simplex formed from four points in 3D space.

  6. 6.

    All the code for these experiments can be found on github: https://github.com/MetricSearch/sisap2023.git.

  7. 7.

    We note that constructed ground truth for even a single query requires \(\genfrac(){0.0pt}2{n}{2}\) observations.

References

  1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001). https://doi.org/10.1145/502807.502808

    Article  Google Scholar 

  2. Connor, R., Cardillo, F.A., Moss, R., Rabitti, F.: Evaluation of jensen-shannon distance over sparse data. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 163–168. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41062-8_16

    Chapter  Google Scholar 

  3. Connor, R., Simeoni, F., Iakovos, M., Moss, R.: A bounded distance metric for comparing tree structure. Inf. Syst. 36(4), 748–764 (2011)

    Article  Google Scholar 

  4. Connor, R., Vadicamo, L., Rabitti, F.: High-dimensional simplexes for supermetric search. In: Similarity Search and Applications: 10th International Conference, SISAP 2017, Munich, Germany, 4–6 October 2017, Proceedings, vol. 10, pp. 96–109. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-68474-1_7

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: PODS, PODS 2001, pp. 102–113. Association for Computing Machinery, New York (2001). https://doi.org/10.1145/375551.375567

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). arxiv.org/abs/1512.03385

  8. Huiskes, M.J., Lew, M.S.: The mir flickr retrieval evaluation. In: MIR 2008: Proceedings of the 2008 ACM International Conference on Multimedia Information Retrieval. ACM, New York (2008)

    Google Scholar 

  9. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999). https://doi.org/10.1145/331499.331504

    Article  Google Scholar 

  10. Mark J. Huiskes, B.T., Lew, M.S.: https://press.liacs.nl/mirflickr//

  11. Moss, R., Connor, R.: A multi-way divergence metric for vector spaces. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 169–174. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41062-8_17

    Chapter  Google Scholar 

  12. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., et al.: Dinov2: learning robust visual features without supervision (2023). arxiv.org/abs/2304.07193

  13. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach, vol. 32. Springer, Heidelberg (2006). https://doi.org/10.1007/0-387-29151-2

Download references

Acknowledgements

This work is partly supported by ESRC grant ES/W010321/1 “2022-2026 ADR UK Programme”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Connor, R., Dearle, A., Morrison, D., Chávez, E. (2023). Similarity Search with Multiple-Object Queries. In: Pedreira, O., Estivill-Castro, V. (eds) Similarity Search and Applications. SISAP 2023. Lecture Notes in Computer Science, vol 14289. Springer, Cham. https://doi.org/10.1007/978-3-031-46994-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46994-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46993-0

  • Online ISBN: 978-3-031-46994-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics