Skip to main content

Experimental Setup for Studying the Influence of Signal Distortions of Incremental Encoders on the Accuracy of Determining Differential Characteristics in CNC

  • Conference paper
  • First Online:
Smart Technologies in Urban Engineering (STUE 2023)

Abstract

The ability to determine the actual differential characteristics of motion is important for accurate control of precision equipment. In a feedback loop with an incremental encoder, the accuracy of the obtained differential characteristics of motion decreases with increasing it order. The reason is the errors that are associated with the accuracy of marking and the distortions in the process of measurement signals transmitting. Signal distortion depends on the circuitry, communication interface, cable type and length, the presence of external interference, and the characteristics of the power supply. The study of the influence of these factors on the accuracy of determining the differential characteristics is an important task. In this paper, the permissible values of measurement signal distortions are determined based on the requirements for the accuracy of obtaining differential characteristics up to a jerk. An experimental setup that satisfies these requirements is proposed. The setup allows generating reference measuring signals and examining their distortions. The results of studies of the distortion of measuring signals using an experimental setup are shown. Directions for further research are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kondratiev A, Píštěk V, Smovziuk L et al (2021) Stress-strain behaviour of reparable composite panel with step-variable thickness. Polymers 13(21):3830. https://doi.org/10.3390/polym13213830

    Article  Google Scholar 

  2. Poznyakov VD, Markashova LI, Shelyagin VD et al (2019) Cold cracking resistance of butt joints in high-strength steels with different welding techniques. Strength Mater 51:843–851. https://doi.org/10.1007/s11223-020-00132-7

    Article  Google Scholar 

  3. Smetankina NV, Sotrikhin SY, Shupikov AN (1995) Theoretical and experimental investigation of vibration of multilayer plates under the action of impulse and impact loads. Int J Solids Struct 32(8–9):1247–1258. https://doi.org/10.1016/0020-7683(94)00132-G

    Article  Google Scholar 

  4. Tsegelnyk Y, Kombarov V, Plankovskyy S et al. (2022) Investigation of the portal-type machine tool gear-belt gearbox. Intern J Mechatr Appl Mech 2022(11):295–302. https://doi.org/10.17683/ijomam/issue11.41

  5. Petráček P, Fojtů P, Kozlok T, Sulitka M (2022) Effect of CNC interpolator parameter settings on toolpath precision and quality in corner neighborhoods. Appl Sci 12(19):9496. https://doi.org/10.3390/app12199496

    Article  Google Scholar 

  6. Kombarov V, Tsegelnyk Y, Plankovskyy S et al (2022) Investigation of the required discreteness of interpolation movement parameters in cyber-physical systems. Periodica Polytech Mech Eng 66(1):1–9. https://doi.org/10.3311/PPme.17884

    Article  Google Scholar 

  7. Abir J, Longo S, Morantz P, Shore P (2017) Virtual metrology frame technique for improving dynamic performance of a small size machine tool. Precis Eng 48:24–31. https://doi.org/10.1016/j.precisioneng.2016.11.002

    Article  Google Scholar 

  8. Rangel-Magdaleno JJ, Romero-Troncoso RJ, Osornio-Rios RA, Cabal-Yepez E (2009) Novel oversampling technique for improving signal-to-quantization noise ratio on accelerometer-based smart jerk sensors in CNC applications. Sensors 9(05):3767–3789. https://doi.org/10.3390/s90503767

    Article  Google Scholar 

  9. De Santiago-Pérez JJ, Osornio-Rios RA, Romero-Troncoso RJ et al (2008) DSP algorithm for the extraction of dynamics parameters in CNC machine tool servomechanisms from an optical incremental encoder. Int J Mach Tools Manuf 48(12–13):1318–1334. https://doi.org/10.1016/j.ijmachtools.2008.06.004

    Article  Google Scholar 

  10. Lopez J, Artes M (2012) A new methodology for vibration error compensation of optical encoders. Sensors 12(4):4918–4933. https://doi.org/10.3390/s120404918

    Article  Google Scholar 

  11. Zhao M, Lin J, Xu J (2011) The measurement and error analysis of instantaneous angular speed using optical incremental encoder. In: 2011 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, p. 82010Y. SPIE. https://doi.org/10.1117/12.902978

  12. Lee SH, Song JB (2001) Acceleration estimator for low-velocity and low-acceleration regions based on encoder position data. IEEE/ASME Trans Mechatron 6(1):58–64. https://doi.org/10.1109/3516.914392

    Article  Google Scholar 

  13. Kukharchuk V, Wójcik W, Pavlov S et al (2022) Features of the angular speed dynamic measurements with the use of an encoder. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska 12(3):20–26. https://doi.org/10.35784/iapgos.3035

  14. Aksonov Y, Kryzhyvets Y, Pliuhin V, et al (2022) The motion differential characteristics estimation using incremental encoders in the CNC feedback loop. In: 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), pp. 1–6. IEEE. https://doi.org/10.1109/KhPIWeek57572.2022.9916428

  15. López J, Artés M, Alejandre I (2011) Analysis of optical linear encoders’ errors under vibration at different mounting conditions. Measurement 44(8):1367–1380. https://doi.org/10.1016/j.measurement.2011.05.004

    Article  Google Scholar 

  16. OMRON: Incremental 40-mm-dia. Rotary Encoder E6B2-CWZ1X 1000P/R 2M. https://www.ia.omron.com/product/item/2382/. Accessed 10 May 2023

  17. Petrella R, Tursini M, Peretti L, Zigliotto M (2007) Speed measurement algorithms for low-resolution incremental encoder equipped drives: a comparative analysis. In: 2007 International Aegean Conference on Electrical Machines and Power Electronics, pp 780–787. IEEE. https://doi.org/10.1109/ACEMP.2007.4510607

  18. Texas Instruments: AN-1031 TIA/EIA-422-B Overview. Application Report. https://www.ti.com/lit/an/snla044b/snla044b.pdf. Accessed 10 May 2023

  19. Albrecht C, Klöck J, Martens O, Schumacher W (2017) Online estimation and correction of systematic encoder line errors. Machines 5(1):1. https://doi.org/10.3390/machines5010001

    Article  Google Scholar 

  20. TT Electronics: Six-Element SMD Photodiode Array OPR2100, OPR2100T, OPR2100HST https://www.ttelectronics.com/TTElectronics/media/ProductFiles/Datasheet/OPR2100.pdf. Accessed 10 May 2023

  21. Texas Instruments: LM339B, LM2901B, LM339, LM239, LM139, LM2901 Quad Differential Comparators. https://www.ti.com/lit/ds/symlink/lm2901.pdf. Accessed 10 May 2023

  22. Texas Instruments: AM26C31 Quadruple Differential Line Driver. https://www.ti.com/lit/ds/symlink/am26c31m.pdf. Accessed 10 May 2023

  23. Aksonov, Y., Kombarov, V., Fojtů, O., et al.: Investigation of processes in high-speed equipment using CNC capabilities. MM Science Journal 2019(04), 3271–3276 (2019). https://doi.org/10.17973/MMSJ.2019_11_2019081

  24. Aksonov Y, Kombarov V, Tsegelnyk Y et al (2021) Visualization and analysis of technological systems experimental operating results. In: 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), Vol 2, pp 141–146. IEEE, Lviv. https://doi.org/10.1109/CSIT52700.2021.9648592

  25. Texas Instruments: ISO722x Dual-Channel Digital Isolators. https://www.ti.com/lit/ds/symlink/iso7220m.pdf. Accessed 10 May 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgen Tsegelnyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aksonov, Y., Kombarov, V., Tsegelnyk, Y., Plankovskyy, S., Riabushko, A. (2023). Experimental Setup for Studying the Influence of Signal Distortions of Incremental Encoders on the Accuracy of Determining Differential Characteristics in CNC. In: Arsenyeva, O., Romanova, T., Sukhonos, M., Biletskyi, I., Tsegelnyk, Y. (eds) Smart Technologies in Urban Engineering. STUE 2023. Lecture Notes in Networks and Systems, vol 807. Springer, Cham. https://doi.org/10.1007/978-3-031-46874-2_24

Download citation

Publish with us

Policies and ethics