Skip to main content

Hole Hardening in Steel Structures Using Impulse Mandrelling

  • Conference paper
  • First Online:
Smart Technologies in Urban Engineering (STUE 2023)

Abstract

This publication presents the study results of the hardening process by the method of surface plastic deformation (SPD) in samples of structural steel grade 12Kh18N9T, which is widely used in load-bearing structures of modern mechanical engineering products. The literature sources are systematized according to the methodology for determining the stress-strain state (SSS) during hardening the part surfaces by impacts of the active medium in the ball form. Issues of strengthening holes as stress concentrators in power parts require separate studies. The article clarifies the issues of holes local hardening due to metal plastic deformation the under the dynamic action of the mandrel. A technique for conducting a full-scale experiment of impulsed hole mandrelling on steel samples (12Kh18N9T) in the tension wide-range from 0.25 to 5% is presented. Shown are the sample dimensions with five holes and a typical mandrel design with three options for varying the diameters of the inlet and calibrating parts. The technique of sample preparation for obtaining microsections and the structure study of the hole deformed layer on an electron microscope are described in detail. The optimal tightness range is determined in accordance with the model of creating a stress-strain state by the method of impulsed mandrelling. The proper convergence of the full-scale experiment results and numerical simulation using the Simufact Forming software package is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGuire MF (2008) Stainless steels for design engineers. ASM Int., Materials Park, OH, USA. https://doi.org/10.31399/asm.tb.ssde.9781627082860

  2. Kondratiev A, Píštěk V, Purhina S et al (2021) Self-heating mould for composite manufacturing. Polymers 13(18):3074. https://doi.org/10.3390/polym13183074

    Article  Google Scholar 

  3. Kumar S, Povoden-Karadeniz E (2021) Plastic deformation behavior in steels during metal forming processes: a review. In: Material flow analysis. IntechOpen. https://doi.org/10.5772/intechopen.97607

  4. Smetankina NV, Sotrikhin SY, Shupikov AN (1995) Theoretical and experimental investigation of vibration of multilayer plates under the action of impulse and impact loads. Int J Solids Struct 32(8–9):1247–1258. https://doi.org/10.1016/0020-7683(94)00132-G

    Article  Google Scholar 

  5. Tkachenko D, Tsegelnyk Y, Myntiuk S, Myntiuk V (2022) Spectral methods application in problems of the thin-walled structures deformation. J Appl Comput Mech 8(2):641–654 (2022). https://doi.org/10.22055/jacm.2021.38346.3207

  6. Mouritz AP (2020) Introduction to aerospace materials. Woodhead Publishing. https://doi.org/10.1533/9780857095152

  7. Kombarov V, Sorokin V, Tsegelnyk Y et al (2021) Numerical control of machining parts from aluminum alloys with sticking minimization. Int J Mech Appl Mech 1(9):209–216. https://doi.org/10.17683/ijomam/issue9.30

  8. Plankovskyy S, Shypul O, Tsegelnyk Y et al (2021) Amplification of heat transfer by shock waves for Thermal Energy Method. In: Nechyporuk M et al (eds) Integrated computer technologies in mechanical engineering—2020. ICTM 2020. LNNS, vol 188, pp 577–587. Springer, Cham. https://doi.org/10.1007/978-3-030-66717-7_49

  9. Teimouri R, Grabowski M, Bogucki R et al (2022) Modeling of strengthening mechanisms of surface layers in burnishing process. Mater Des 223:111114. https://doi.org/10.1016/j.matdes.2022.111114

    Article  Google Scholar 

  10. Bourebia M, Bouri A, Hamadache H et al (2019) Study of the effect burnishing on superficial hardness and hardening of S355JR steel using experimental planning. Energy Procedia 157:568–577. https://doi.org/10.1016/j.egypro.2018.11.221

    Article  Google Scholar 

  11. Alshareef A, Marinescu I, Basudan I et al (2020) Ball-burnishing factors affecting residual stress of AISI 8620 steel. Int J Adv Manuf Technol 107:1387–1397. https://doi.org/10.1007/s00170-020-05119-x

    Article  Google Scholar 

  12. Cui P, Liu Z, Yao X, Cai Y (2022) Effect of ball burnishing pressure on surface roughness by low plasticity burnishing Inconel 718 pre-turned surface. Materials 15:8067. https://doi.org/10.3390/ma15228067

    Article  Google Scholar 

  13. Ullah R, Fangnon E, Huuki J (2023) Effect of ultrasonic burnishing parameters on burnished-surface quality of stainless steel after heat treatment. In: Kim KY et al (eds) Flexible automation and intelligent manufacturing: the human-data-technology nexus. FAIM 2022. LNME, pp 38–47. Springer, Cham. https://doi.org/10.1007/978-3-031-18326-3_4

  14. Zhang Q, Ye Y, Yang Y et al (2022) A review of low-plasticity burnishing and its applications. Adv Eng Mater 24(11):2200365. https://doi.org/10.1002/adem.202200365

    Article  Google Scholar 

  15. Vorobiov I, Maiorova K, Voronko I et al (2022) Creation and improvement principles of the pneumatic manual impulse devices. In: Nechyporuk M et al (eds) Integrated computer technologies in mechanical engineering—2021. LNNS, vol 367, pp 178–191. Springer, Cham. https://doi.org/10.1007/978-3-030-94259-5_17

  16. Krivtsov VS, Voronko VV, Zaytsev VY (2015) Advanced prospects for the development of aircraft assembly technology. Sci Innov 11(3):11–18. https://doi.org/10.15407/scine11.03.011

  17. Voronko V, Dyachenko Y, Voronko I et al (2023) Automation of the pneumatic impulse mandreling technological. In: Arsenyeva O et al (eds) Smart technologies in urban engineering—2022. STUE 2022, LNNS, vol 536, pp 569–580. Springer, Cham. https://doi.org/10.1007/978-3-031-20141-7_52

  18. Voronko V, Dyachenko Y, Voronko I et al (2024) Technology of holes strengthening by pneumo-impulse hole mandrelling. In: Nechyporuk M et al (eds) Integrated computer technologies in mechanical engineering—2022. ICTM 2022. LNNS, vol 657. Springer, Cham

    Google Scholar 

  19. Voronko I, Voronko V, Dyachenko Y, Shapar S (2023) Process simulation of hole mandrelling in steel aircraft parts. Hung J Ind Chem 51(1):1–7 (2023). https://doi.org/10.33927/hjic-2023-01

  20. Fu Y, Ge E, Su H et al (2015) Cold expansion technology of connection holes in aircraft structures: a review and prospect. Chin J Aeronaut 28(4):961–973. https://doi.org/10.1016/j.cja.2015.05.006

    Article  Google Scholar 

  21. Frija M, Hassine T, Fathallah R et al (2006) Finite element modelling of shot peening process: Prediction of the compressive residual stresses, the plastic deformations and the surface integrity. Mater Sci Eng, A 426:173–180. https://doi.org/10.1016/j.msea.2006.03.097

    Article  Google Scholar 

  22. Haque R (2017) Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: a review. Arch Civ Mech Eng 18(1):83–93. https://doi.org/10.1016/j.acme.2017.06.003

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iryna Voronko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Voronko, I., Dyachenko, Y., Voronko, V., Shapar, S., Dmytrenko, D. (2023). Hole Hardening in Steel Structures Using Impulse Mandrelling. In: Arsenyeva, O., Romanova, T., Sukhonos, M., Biletskyi, I., Tsegelnyk, Y. (eds) Smart Technologies in Urban Engineering. STUE 2023. Lecture Notes in Networks and Systems, vol 807. Springer, Cham. https://doi.org/10.1007/978-3-031-46874-2_21

Download citation

Publish with us

Policies and ethics