Skip to main content

Abstract

Fats highly contribute to the food quality in terms of taste, smell, texture, and nutrition. Fats and oils consist mainly of triacylglycerols and other acylglycerols, where fatty acids are esterified with glycerol. This chapter discusses how all dietary fats and oils are made up of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) in different proportions and affecting both melting point and nutritional value. The dietary guidelines for fat are presented and the scientific support for this advice is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid (20:4n-6)

AI:

Adequate intake

ALA:

Alpha-linolenic acid (18:3n-3)

CHD:

Coronary heart disease

CVD:

Cardiovascular disease

DHA:

Docosahexaenoic acid (22:6n-3)

E%:

Energy %

EPA:

Eicosapentaenoic acid (20:5n-3)

HDL:

High-density lipoprotein

LA:

Linoleic acid (18:2n-6)

LDL:

Low-density lipoprotein

MUFA:

Monounsaturated fatty acids

NCDs:

Noncommunicable diseases

PUFA:

Polyunsaturated fatty acids

RCT:

Randomized controlled trial

SFA:

Saturated fatty acids

WHO:

World Health Organization

References

  1. Afshin AEA (2019) Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393:1958–1972

    Article  Google Scholar 

  2. Schulze MB et al (2018) Food based dietary patterns and chronic disease prevention. BMJ 361:k2396. https://doi.org/10.1136/bmj.k2396

    Article  PubMed  PubMed Central  Google Scholar 

  3. Manzoor S, Masoodi FA, Rashid R, Nasqashi F, Ahmad M (2022) Oleogels for the development of healthy meat products: a review. Applied. Food Res 2:100212

    CAS  Google Scholar 

  4. O’Brien RD (2009) Fats and oils. Formulating and processing for applications, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  5. Haas MJ (2005) Animal fats. In: S. F (ed) Bailey’s industrial oil and fat products, 6th edn. John Wiley & Sons Inc, USA, pp 161–212

    Google Scholar 

  6. Padley FB, Gunstone FD, Harwood JL (1994) Occurrence and characteristics of oils and fats. In: Harwood HJ, Gunstone FD, Padley FB (eds) The lipid handbook, 2nd edn. Chapman & Hall, London

    Google Scholar 

  7. Dubois V, Breton S, Linder M (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 109:710–732

    Article  CAS  Google Scholar 

  8. Gunstone FD (2005) Vegetable oils. In: S. F (ed) Bailey’s industrial oil and fat products. John Wiley & Sons Inc, USA

    Google Scholar 

  9. Ilievska B et al (2016) Topical formulation comprising fatty acid extract from cod liver oil: development, evaluation and stability studies. Mar Drugs 14. https://doi.org/10.3390/md14060105

  10. Dovale-Rosabal G et al (2019) Concentration of EPA and DHA from refined salmon oil by optimizing the urea(−)fatty acid adduction reaction conditions using response surface methodology. Molecules 24. https://doi.org/10.3390/molecules24091642

  11. Reedy J et al (2014) Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr 144:881–889. https://doi.org/10.3945/jn.113.189407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Russell J et al (2013) Adherence to dietary guidelines and 15-year risk of all-cause mortality. Br J Nutr 109:547–555. https://doi.org/10.1017/S0007114512001377

    Article  CAS  PubMed  Google Scholar 

  13. US Department of Health and Human Services and US Department of Agriculture (1980) Dietary guidelines for Americans. Available from: https://www.dietaryguidelines.gov/about-dietary-guidelines/previous-editions/1980-dietary-guidelines-americans. Access date 13 Mar 2023

  14. Jahns L et al (2018) The history and future of dietary guidance in America. Adv Nutr 9:136–147. https://doi.org/10.1093/advances/nmx025

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kris-Etherton PM, Krauss RM (2020) Public health guidelines should recommend reducing saturated fat consumption as much as possible: YES. Am J Clin Nutr 112:13–18. https://doi.org/10.1093/ajcn/nqaa110

    Article  PubMed  Google Scholar 

  16. WHO (2004) Global strategy on diet, physical activity and health (WHA57.17). World Health Organization, Geneva

    Google Scholar 

  17. US Department of Health and Human Services and US Department of Agriculture (2015) Dietary guidelines for Americans, 8th edn. US Government Printing Office, Washington, DC

    Google Scholar 

  18. Astrup A et al (2020) Saturated fats and health: a reassessment and proposal for food-based recommendations: JACC state-of-the-art review. J Am Coll Cardiol 76:844–857. https://doi.org/10.1016/j.jacc.2020.05.077

    Article  CAS  PubMed  Google Scholar 

  19. Lenighan YM, McNulty BA, Roche HM (2019) Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on alpha-linolenic acid. Proc Nutr Soc 78:234–245. https://doi.org/10.1017/S0029665118002793

    Article  CAS  PubMed  Google Scholar 

  20. US Department of Health and Human Services and US Department of Agriculture (2010) Dietary guidelines for Americans, 7th edn. US Government Printing Office, Washington, DC

    Google Scholar 

  21. Arnett DK et al (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 140:e596–e646. https://doi.org/10.1161/CIR.0000000000000678

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jacobson TA et al (2015) National lipid association recommendations for patient-centered management of dyslipidemia: part 2. J Clin Lipidol 9:S1–122. https://doi.org/10.1016/j.jacl.2015.09.002

  23. WHO (2020) Healthy diet. Available from: https://www.who.int/news-room/fact-sheets/detail/healthy-diet. Access date 13 Mar 2023

  24. EFSA (2010) EFSA panel on dietetic products, nutrition, and allergies (NDA); scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 8:1461

    Google Scholar 

  25. WHO (2018) Guidelines: saturated fatty acids and trans fatty acids intake for adults and children. Fact sheet no 394. Available from: https://cdn.who.int/media/docs/default-source/healthy-diet/healthy-diet-fact-sheet-394.pdf. Access date 13 Mar 2023

  26. GOED (2016) Recommendations for daily intake of EPA and DHA omega-3 fatty acids. Available from: https://goedomega3.com/storage/app/media/press-releases/press_release_Intake_Recommendations.pdf. Accessed 13 Mar 2023

  27. Farvid MS et al (2014) Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation 130:1568–1578. https://doi.org/10.1161/CIRCULATIONAHA.114.010236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoenselaar R (2015) Letter by Hoenselaar regarding article, “Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies”. Circulation 132:e20. https://doi.org/10.1161/CIRCULATIONAHA.114.014510

    Article  PubMed  Google Scholar 

  29. Lucas M (2015) Letter by Lucas regarding articles, “Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies” and “Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: the cardiovascular health study”. Circulation 132:e21. https://doi.org/10.1161/CIRCULATIONAHA.114.013446

    Article  PubMed  Google Scholar 

  30. Schwab U et al (2014) Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Food Nutr Res 58. https://doi.org/10.3402/fnr.v58.25145

  31. American Heart Association (2014) Frequently asked questions about fish. Available at: https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/fats/fish-and-omega-3-fatty-acids. Access date 12 Dec 2022

  32. He K (2009) Fish, long-chain omega-3 polyunsaturated fatty acids and prevention of cardiovascular disease--eat fish or take fish oil supplement? Prog Cardiovasc Dis 52:95–114. https://doi.org/10.1016/j.pcad.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  33. Kris-Etherton PM et al (2000) Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 71:179S–188S. https://doi.org/10.1093/ajcn/71.1.179S

    Article  CAS  PubMed  Google Scholar 

  34. Philibert A et al (2006) Fish intake and serum fatty acid profiles from freshwater fish. Am J Clin Nutr 84:1299–1307. https://doi.org/10.1093/ajcn/84.6.1299

    Article  CAS  PubMed  Google Scholar 

  35. Calder PC (2014) Very long chain omega-3 (n-3) fatty acids and human health. Eur J Lipid Sci Technol 116:1280–1300

    Article  CAS  Google Scholar 

  36. Innes JK, Calder PC (2020) Marine Omega-3 (N-3) fatty acids for cardiovascular health: an update for 2020. Int J Mol Sci 21. https://doi.org/10.3390/ijms21041362

  37. Mason RP (2019) New insights into mechanisms of action for omega-3 fatty acids in atherothrombotic cardiovascular disease. Curr Atheroscler Rep 21:2

    Article  Google Scholar 

  38. Borow KM, Nelson JR, Mason RP (2015) Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis. Atherosclerosis 242:357–366. https://doi.org/10.1016/j.atherosclerosis.2015.07.035

    Article  CAS  PubMed  Google Scholar 

  39. Minihane AM (2016) Impact of genotype on EPA and DHA status and responsiveness to increased intakes. Nutrients 8:123. https://doi.org/10.3390/nu8030123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stamler J (1992) Established major coronary risk factors. In: Elliott P, Marmot M (eds) Coronary heart disease epidemiology: from aetiology to public health. Oxford University Press, London, pp 32–70

    Google Scholar 

  41. Hegsted DM et al (1965) Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr 17:281–295. https://doi.org/10.1093/ajcn/17.5.281

    Article  CAS  PubMed  Google Scholar 

  42. Keys A, Anderson JT, Grande F (1965) Serum cholesterol response to changes in the diet: IV. Particular saturated fatty acids in the diet. Metabolism 14:776–787. https://doi.org/10.1016/0026-0495(65)90004-1

    Article  CAS  PubMed  Google Scholar 

  43. Keys AE (1970) Coronary heart disease in seven countries. Circulation 41:1–211

    Google Scholar 

  44. Keys A (1980) Seven countries. A multivariate analysis of death and coronary heart disease. Harvard University Press, Cambridge, Massachusetts and London

    Book  Google Scholar 

  45. Kromhout D et al (1995) Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: the seven countries study. Prev Med 24:308–315. https://doi.org/10.1006/pmed.1995.1049

    Article  CAS  PubMed  Google Scholar 

  46. Bier DM (2016) Saturated fats and cardiovascular disease: interpretations not as simple as they once were. Crit Rev Food Sci Nutr 56:1943–1946. https://doi.org/10.1080/10408398.2014.998332

    Article  CAS  PubMed  Google Scholar 

  47. de Souza RJ et al (2015) Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 351:h3978. https://doi.org/10.1136/bmj.h3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Harcombe Z, Baker JS, Davies B (2017) Evidence from prospective cohort studies does not support current dietary fat guidelines: a systematic review and meta-analysis. Br J Sports Med 51:1743–1749. https://doi.org/10.1136/bjsports-2016-096550

    Article  PubMed  Google Scholar 

  49. Ramsden CE et al (2016) Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota coronary experiment (1968–73). BMJ 353:i1246. https://doi.org/10.1136/bmj.i1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Siri-Tarino PW et al (2010) Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr 91:535–546. https://doi.org/10.3945/ajcn.2009.27725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Skeaff CM, Miller J (2009) Dietary fat and coronary heart disease: summary of evidence from prospective cohort and randomised controlled trials. Ann Nutr Metab 55:173–201. https://doi.org/10.1159/000229002

    Article  CAS  PubMed  Google Scholar 

  52. Astrup A et al (2011) The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010? Am J Clin Nutr 93:684–688. https://doi.org/10.3945/ajcn.110.004622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hooper L et al (2020) Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 8. https://doi.org/10.1002/14651858.CD011737.pub3

  54. Mozaffarian D, Micha R, Wallace S (2010) Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med 7:e1000252. https://doi.org/10.1371/journal.pmed.1000252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Whitney E, Rolfes SR (2005) Understanding nutrition (Tenth edition). Thomson Learning Inc

    Google Scholar 

  56. Pichler G et al (2018) LDL particle size and composition and incident cardiovascular disease in a south-European population: the Hortega-Liposcale follow-up study. Int J Cardiol 264:172–178. https://doi.org/10.1016/j.ijcard.2018.03.128

    Article  CAS  PubMed  Google Scholar 

  57. Libby P et al (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54:2129–2138. https://doi.org/10.1016/j.jacc.2009.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ross R (1999) Atherosclerosis--an inflammatory disease. N Engl J Med 340:115–126. https://doi.org/10.1056/NEJM199901143400207

    Article  CAS  PubMed  Google Scholar 

  59. Cuchel M, Rader DJ (2006) Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 113:2548–2555. https://doi.org/10.1161/CIRCULATIONAHA.104.475715

    Article  PubMed  Google Scholar 

  60. Castelli WP (1984) Epidemiology of coronary heart disease: the Framingham study. Am J Med 76:4–12. https://doi.org/10.1016/0002-9343(84)90952-5

    Article  CAS  PubMed  Google Scholar 

  61. Briel M et al (2009) Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 338:b92. https://doi.org/10.1136/bmj.b92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Voight BF et al (2012) Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380:572–580. https://doi.org/10.1016/S0140-6736(12)60312-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rohatgi A et al (2021) HDL in the 21st century: a multifunctional roadmap for future HDL research. Circulation 143:2293–2309. https://doi.org/10.1161/CIRCULATIONAHA.120.044221

    Article  PubMed  PubMed Central  Google Scholar 

  64. van der Steeg WA et al (2008) High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J Am Coll Cardiol 51:634–642. https://doi.org/10.1016/j.jacc.2007.09.060

    Article  CAS  PubMed  Google Scholar 

  65. Emerging Risk Factors, C et al (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302:1993–2000. https://doi.org/10.1001/jama.2009.1619

    Article  Google Scholar 

  66. Heidemann BE et al (2021) The relation between VLDL-cholesterol and risk of cardiovascular events in patients with manifest cardiovascular disease. Int J Cardiol 322:251–257. https://doi.org/10.1016/j.ijcard.2020.08.030

    Article  PubMed  Google Scholar 

  67. Clarke R et al (1997) Dietary lipids and blood cholesterol: quantitative meta-analysis of metabolic ward studies. BMJ 314:112–117. https://doi.org/10.1136/bmj.314.7074.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mensink RP, Katan MB (1992) Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler Thromb 12:911–919. https://doi.org/10.1161/01.atv.12.8.911

    Article  CAS  PubMed  Google Scholar 

  69. Mensink RP et al (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77:1146–1155. https://doi.org/10.1093/ajcn/77.5.1146

    Article  CAS  PubMed  Google Scholar 

  70. Muller H, Kirkhus B, Pedersen JI (2001) Serum cholesterol predictive equations with special emphasis on trans and saturated fatty acids. An analysis from designed controlled studies. Lipids 36:783–791. https://doi.org/10.1007/s11745-001-0785-6

    Article  CAS  PubMed  Google Scholar 

  71. Sanders TA (2009) Fat and fatty acid intake and metabolic effects in the human body. Ann Nutr Metab 55:162–172. https://doi.org/10.1159/000229001

    Article  CAS  PubMed  Google Scholar 

  72. Yu S et al (1995) Plasma cholesterol-predictive equations demonstrate that stearic acid is neutral and monounsaturated fatty acids are hypocholesterolemic. Am J Clin Nutr 61:1129–1139. https://doi.org/10.1093/ajcn/61.4.1129

    Article  CAS  PubMed  Google Scholar 

  73. St-Onge MP et al (2008) Medium chain triglyceride oil consumption as part of a weight loss diet does not lead to an adverse metabolic profile when compared to olive oil. J Am Coll Nutr 27:547–552. https://doi.org/10.1080/07315724.2008.10719737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Almendingen K et al (1995) Effects of partially hydrogenated fish oil, partially hydrogenated soybean oil, and butter on serum lipoproteins and Lp[a] in men. J Lipid Res 36:1370–1384

    Article  CAS  PubMed  Google Scholar 

  75. Mensink RP, Katan MB (1990) Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N Engl J Med 323:439–445. https://doi.org/10.1056/NEJM199008163230703

    Article  CAS  PubMed  Google Scholar 

  76. Allaire J et al (2018) High-dose DHA has more profound effects on LDL-related features than high-dose EPA: the ComparED study. J Clin Endocrinol Metab 103:2909–2917. https://doi.org/10.1210/jc.2017-02745

    Article  PubMed  Google Scholar 

  77. Innes JK, Calder PC (2018) The differential effects of eicosapentaenoic acid and docosahexaenoic acid on cardiometabolic risk factors: a systematic review. Int J Mol Sci 19. https://doi.org/10.3390/ijms19020532

  78. Jacobson TA et al (2012) Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. J Clin Lipidol 6:5–18. https://doi.org/10.1016/j.jacl.2011.10.018

    Article  PubMed  Google Scholar 

  79. Taylor CB et al (1962) Atherosclerosis in rhesus monkeys. II. Arterial lesions associated with hypercholesteremia induced by dietary fat and cholesterol. Arch Pathol 74:16–34

    CAS  PubMed  Google Scholar 

  80. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47. https://doi.org/10.1126/science.3513311

    Article  CAS  PubMed  Google Scholar 

  81. Yuan G, Wang J, Hegele RA (2006) Heterozygous familial hypercholesterolemia: an underrecognized cause of early cardiovascular disease. CMAJ 174:1124–1129. https://doi.org/10.1503/cmaj.051313

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dayton S, Pearce ML (1969) Diet high in unsaturated fat. A controlled clinical trial. Minn Med 52:1237–1242. https://doi.org/10.1161/01.cir.40.1s2.ii-1

    Article  CAS  PubMed  Google Scholar 

  83. Miettinen M et al (1972) Effect of cholesterol-lowering diet on mortality from coronary heart-disease and other causes. A twelve-year clinical trial in men and women. Lancet 2:835–838. https://doi.org/10.1016/s0140-6736(72)92208-8

    Article  CAS  PubMed  Google Scholar 

  84. Hjermann I et al (1981) Effect of diet and smoking intervention on the incidence of coronary heart disease. Report from the Oslo study group of a randomised trial in healthy men. Lancet 2:1303–1310. https://doi.org/10.1016/s0140-6736(81)91338-6

    Article  CAS  PubMed  Google Scholar 

  85. Holme I et al (2016) Lifelong benefits on myocardial infarction mortality: 40-year follow-up of the randomized Oslo diet and antismoking study. J Intern Med 280:221–227. https://doi.org/10.1111/joim.12485

    Article  CAS  PubMed  Google Scholar 

  86. Ford ES et al (2007) Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med 356:2388–2398. https://doi.org/10.1056/NEJMsa053935

    Article  CAS  PubMed  Google Scholar 

  87. Kuulasmaa K et al (2000) Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA project populations. Lancet 355:675–687. https://doi.org/10.1016/s0140-6736(99)11180-2

    Article  CAS  PubMed  Google Scholar 

  88. Puska P (2009) Fat and heart disease: yes we can make a change--the case of North Karelia (Finland). Ann Nutr Metab 54(Suppl 1):33–38. https://doi.org/10.1159/000220825

    Article  CAS  PubMed  Google Scholar 

  89. Pedersen JI, Tverdal A, Kirkhus B (2004) Diet changes and the rise and fall of cardiovascular disease mortality in Norway. Tidsskr Nor Laegeforen 124:1532–1536

    PubMed  Google Scholar 

  90. Ference BA et al (2017) Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 38:2459–2472. https://doi.org/10.1093/eurheartj/ehx144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thompson GR (2009) History of the cholesterol controversy in Britain. QJM 102:81–86. https://doi.org/10.1093/qjmed/hcn158

    Article  CAS  PubMed  Google Scholar 

  92. Baigent C et al (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366:1267–1278. https://doi.org/10.1016/S0140-6736(05)67394-1

    Article  CAS  PubMed  Google Scholar 

  93. Shepherd J (1995) Statin therapy in clinical practice: new developments. Curr Opin Lipidol 6:254–255

    CAS  PubMed  Google Scholar 

  94. Scandinavian Sivastatin Survival Study Group (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian simvastatin survival study (4S). Lancet 344:1383–1389

    Google Scholar 

  95. Kromhout D (1999) Serum cholesterol in cross-cultural perspective. The seven countries study. Acta Cardiol 54:155–158

    CAS  PubMed  Google Scholar 

  96. Gao S, Liu J (2017) Association between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease. Chronic Dis Transl Med 3:89–94. https://doi.org/10.1016/j.cdtm.2017.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  97. Holvoet P et al (2003) Association of high coronary heart disease risk status with circulating oxidized LDL in the well-functioning elderly: findings from the health, aging, and body composition study. Arterioscler Thromb Vasc Biol 23:1444–1448. https://doi.org/10.1161/01.ATV.0000080379.05071.22

    Article  CAS  PubMed  Google Scholar 

  98. Lefevre M et al (2004) Dietary fatty acids, hemostasis, and cardiovascular disease risk. J Am Diet Assoc 104:410–419; quiz 492. https://doi.org/10.1016/j.jada.2003.12.022

    Article  CAS  PubMed  Google Scholar 

  99. Renaud S et al (1986) Nutrients, platelet function and composition in nine groups of French and British farmers. Atherosclerosis 60:37–48. https://doi.org/10.1016/0021-9150(86)90085-7

    Article  CAS  PubMed  Google Scholar 

  100. Rosch PJ (2008) Cholesterol does not cause coronary heart disease in contrast to stress. Scand Cardiovasc J 42:244–249. https://doi.org/10.1080/14017430801993701

    Article  CAS  PubMed  Google Scholar 

  101. Sorriento D, Iaccarino G (2019) Inflammation and cardiovascular diseases: the most recent findings. Int J Mol Sci 20. https://doi.org/10.3390/ijms20163879

  102. Artaud-Wild SM et al (1993) Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox. Circulation 88:2771–2779. https://doi.org/10.1161/01.cir.88.6.2771

    Article  CAS  PubMed  Google Scholar 

  103. Stamler J (2010) Diet-heart: a problematic revisit. Am J Clin Nutr 91:497–499. https://doi.org/10.3945/ajcn.2010.29216

    Article  CAS  PubMed  Google Scholar 

  104. Bingham SA et al (2003) Are imprecise methods obscuring a relation between fat and breast cancer? Lancet 362:212–214. https://doi.org/10.1016/S0140-6736(03)13913-X

    Article  PubMed  Google Scholar 

  105. Prentice RL (2003) Dietary assessment and the reliability of nutritional epidemiology reports. Lancet 362:182–183. https://doi.org/10.1016/S0140-6736(03)13950-5

    Article  PubMed  Google Scholar 

  106. Keys A (1988) Diet and blood cholesterol in population surveys--lessons from analysis of the data from a major survey in Israel. Am J Clin Nutr 48:1161–1165. https://doi.org/10.1093/ajcn/48.5.1161

    Article  CAS  PubMed  Google Scholar 

  107. Muller H et al (2003) The serum LDL/HDL cholesterol ratio is influenced more favorably by exchanging saturated with unsaturated fat than by reducing saturated fat in the diet of women. J Nutr 133:78–83. https://doi.org/10.1093/jn/133.1.78

    Article  CAS  PubMed  Google Scholar 

  108. Alberti KG et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644

    Article  CAS  PubMed  Google Scholar 

  109. Melanson EL, Astrup A, Donahoo WT (2009) The relationship between dietary fat and fatty acid intake and body weight, diabetes, and the metabolic syndrome. Ann Nutr Metab 55:229–243. https://doi.org/10.1159/000229004

    Article  CAS  PubMed  Google Scholar 

  110. Riccardi G, Giacco R, Rivellese AA (2004) Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr 23:447–456. https://doi.org/10.1016/j.clnu.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  111. Riserus U (2008) Fatty acids and insulin sensitivity. Curr Opin Clin Nutr Metab Care 11:100–105. https://doi.org/10.1097/MCO.0b013e3282f52708

    Article  CAS  PubMed  Google Scholar 

  112. Vessby B et al (2001) Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia 44:312–319. https://doi.org/10.1007/s001250051620

    Article  CAS  PubMed  Google Scholar 

  113. Vessby B et al (2002) Desaturation and elongation of fatty acids and insulin action. Ann N Y Acad Sci 967:183–195. https://doi.org/10.1111/j.1749-6632.2002.tb04275.x

    Article  CAS  PubMed  Google Scholar 

  114. Luukkonen PK et al (2018) Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care 41:1732–1739. https://doi.org/10.2337/dc18-0071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bojkova B, Winklewski PJ, Wszedybyl-Winklewska M (2020) Dietary fat and cancer-which is good, which is bad, and the body of evidence. Int J Mol Sci 21. https://doi.org/10.3390/ijms21114114

  116. Gerber M (2009) Background review paper on total fat, fatty acid intake and cancers. Ann Nutr Metab 55:140–161. https://doi.org/10.1159/000229000

    Article  CAS  PubMed  Google Scholar 

  117. Pascual G et al (2021) Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature 599:485–490. https://doi.org/10.1038/s41586-021-04075-0

    Article  CAS  PubMed  Google Scholar 

  118. Markellos C et al (2022) Olive oil intake and cancer risk: a systematic review and meta-analysis. PLoS One 17. https://doi.org/10.1371/journal.pone.0261649

  119. WCRF/AICR (2007) Diet, nutrition, physical activity and cancer: a global perspective. American Institute for Cancer Research, Washington, DC

    Google Scholar 

  120. WCRF/AICR (2018) Diet, nutrition and physical activity and colorectal cancer. Continuous Update Project Expert Report

    Google Scholar 

  121. Bernstein C et al (2011) Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 85:863–871. https://doi.org/10.1007/s00204-011-0648-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Devkota S et al (2012) Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487:104–108. https://doi.org/10.1038/nature11225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gaundal L et al (2021) Beneficial effect on serum cholesterol levels, but not glycaemic regulation, after replacing SFA with PUFA for 3 d: a randomised crossover trial. Br J Nutr 125:915–925. https://doi.org/10.1017/S0007114520003402

    Article  CAS  PubMed  Google Scholar 

  124. Pedersen JI, Kirkhus B, Muller H (2003) Serum cholesterol predictive equations in product development. Eur J Med Res 8:325–331

    CAS  PubMed  Google Scholar 

  125. Pedersen JI, Kirkhus B (2008) Fatty acid composition of post trans margarines and their health implications. Lipid Technol 20:132–135

    Google Scholar 

  126. Duarte C et al (2021) Dairy versus other saturated fats source and cardiometabolic risk markers: systematic review of randomized controlled trials. Crit Rev Food Sci Nutr 61:450–461. https://doi.org/10.1080/10408398.2020.1736509

    Article  CAS  PubMed  Google Scholar 

  127. Schwingshackl L et al (2018) Effects of oils and solid fats on blood lipids: a systematic review and network meta-analysis. J Lipid Res 59:1771–1782. https://doi.org/10.1194/jlr.P085522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hisham MDB et al (2020) The effects of palm oil on serum lipid profiles: a systematic review and meta-analysis. Asia Pac J Clin Nutr 29:523–536. https://doi.org/10.6133/apjcn.202009_29(3).0011

    Article  CAS  PubMed  Google Scholar 

  129. Neelakantan N, Seah JYH, van Dam RM (2020) The effect of coconut oil consumption on cardiovascular risk factors: a systematic review and meta-analysis of clinical trials. Circulation 141:803–814. https://doi.org/10.1161/CIRCULATIONAHA.119.043052

    Article  PubMed  Google Scholar 

  130. Teng M et al (2020) Impact of coconut oil consumption on cardiovascular health: a systematic review and meta-analysis. Nutr Rev 78:249–259. https://doi.org/10.1093/nutrit/nuz074

    Article  PubMed  Google Scholar 

  131. Ghobadi S et al (2019) Comparison of blood lipid-lowering effects of olive oil and other plant oils: a systematic review and meta-analysis of 27 randomized placebo-controlled clinical trials. Crit Rev Food Sci Nutr 59:2110–2124. https://doi.org/10.1080/10408398.2018.1438349

    Article  CAS  PubMed  Google Scholar 

  132. Amiri M et al (2020) The effects of canola oil on cardiovascular risk factors: a systematic review and meta-analysis with dose-response analysis of controlled clinical trials. Nutr Metab Cardiovasc Dis 30:2133–2145. https://doi.org/10.1016/j.numecd.2020.06.007

    Article  CAS  PubMed  Google Scholar 

  133. Fine F, Brochet C, Gaud M, Carre P, Simon N, Ramli F, Joffre F (2016) Micronutrients in vegetable oils: the impact of crushing and refining processes on vitamins and antioxidants in sunflower, rapeseed, and soybean oils. Eur J Lipid Sci Technol 118:680–697

    Article  CAS  Google Scholar 

  134. Gupta AK et al (2011) Role of phytosterols in lipid-lowering: current perspectives. QJM 104:301–308. https://doi.org/10.1093/qjmed/hcr007

    Article  CAS  PubMed  Google Scholar 

  135. Katan MB et al (2003) Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc 78:965–978. https://doi.org/10.4065/78.8.965

    Article  CAS  PubMed  Google Scholar 

  136. Kamal-Eldin A (2005) Minor components of fats and oils. In: Shahidi (ed) Bailey’s industrial oil and fat products, 6th edn. John Wiley & Sons, Inc., New York

    Google Scholar 

  137. Phillips KM (2002) Free and esterified sterol composition of edible oils and fats. J Food Compos Anal 15:123–142

    Article  CAS  Google Scholar 

  138. Matheson A et al (2018) Phytosterol-based edible oleogels: a novel way of replacing saturated fat in food. Nutr Bull 43:189–194. https://doi.org/10.1111/nbu.12325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kullenberg D et al (2012) Health effects of dietary phospholipids. Lipids Health Dis 11:3. https://doi.org/10.1186/1476-511X-11-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Banás K, Harasym J (2021) Current knowledge of content and composition of oat oil—future perspectives of oat as oil source. Food Bioprocess Technol 14:232–247

    Article  Google Scholar 

  141. Christensen LP (2009) Galactolipids as potential health promoting compounds in vegetable foods. Recent Pat Food Nutr Agric 1:50–58. https://doi.org/10.2174/2212798410901010050

    Article  CAS  PubMed  Google Scholar 

  142. Chu BS et al (2009) Modulating pancreatic lipase activity with galactolipids: effects of emulsion interfacial composition. Langmuir 25:9352–9360. https://doi.org/10.1021/la9008174

    Article  CAS  PubMed  Google Scholar 

  143. Burns AA et al (2002) Dose-response effects of a novel fat emulsion (Olibra) on energy and macronutrient intakes up to 36 h post-consumption. Eur J Clin Nutr 56:368–377. https://doi.org/10.1038/sj.ejcn.1601326

    Article  CAS  PubMed  Google Scholar 

  144. Ohlsson L et al (2014) Postprandial effects on plasma lipids and satiety hormones from intake of liposomes made from fractionated oat oil: two randomized crossover studies. Food Nutr Res 58. https://doi.org/10.3402/fnr.v58.24465

  145. EFSA (2011) Scientific opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage, Parma, Italy

    Google Scholar 

  146. Estruch R et al (2018) Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 378:e34. https://doi.org/10.1056/NEJMoa1800389

    Article  CAS  PubMed  Google Scholar 

  147. Gorzynik-Debicka M et al (2018) Potential health benefits of olive oil and plant polyphenols. Int J Mol Sci 19. https://doi.org/10.3390/ijms19030686

  148. Tapsell LC et al (2016) Foods, nutrients, and dietary patterns: interconnections and implications for dietary guidelines. Adv Nutr 7:445–454. https://doi.org/10.3945/an.115.011718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Briggs MA, Petersen KS, Kris-Etherton PM (2017) Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk. Healthcare (Basel) 5. https://doi.org/10.3390/healthcare5020029

  150. Rice BH (2014) Dairy and cardiovascular disease: a review of recent observational research. Curr Nutr Rep 3:130–138. https://doi.org/10.1007/s13668-014-0076-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen M et al (2016) Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. Am J Clin Nutr 104:1209–1217. https://doi.org/10.3945/ajcn.116.134460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirkhus, B., Skuladottir, G.V., Lampi, AM., Nilsson, A. (2024). Nutritional Aspects of Fats and Oils. In: Palla, C., Valoppi, F. (eds) Advances in Oleogel Development, Characterization, and Nutritional Aspects. Springer, Cham. https://doi.org/10.1007/978-3-031-46831-5_2

Download citation

Publish with us

Policies and ethics