Skip to main content

An Image Compression Approach Based on Convolutional AutoEncoder

  • Conference paper
  • First Online:
Artificial Intelligence and Green Computing (ICAIGC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 806))

  • 94 Accesses

Abstract

In recent years, neural networks have demonstrated their robustness and effectiveness in many fields mainly in computer vision tasks. Hence, recently researchers in image processing domain exploit neural networks, powerful ability of representing data, to develop different compression schemes. These schemes yield images with great visual quality and high compression ratio. In this paper, we propose a compression scheme that takes advantages of convolutional Auto-Encoder (CAE) to improve image compression performance. First, an RGB image is converted to the luminance/chrominance space YCbCr then the luminance component Y is compressed using an auto-encoder based convolutional neural network (CNN) whereas the chrominance components CbCr are sub-scaled. Different parameters used to evaluate the efficiency of our proposed method are: Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR) and Multi Scale Structural Similarity Index Measure (MS-SSIM). The results obtained show the effectiveness of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimization of nonlinear transform codes for perceptual quality. In: 2016 Picture Coding Symposium (PCS), pp. 1–5. IEEE (2016)

    Google Scholar 

  2. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression (2016). arXiv:1611.01704

  3. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior (2018). arXiv:1802.01436

  4. Bellard, F.: Bpg image format (2020). https://bellard.org/bpg/

  5. van den Branden Lambrecht, C.J.: Vision Models and Applications to Image and Video Processing. Springer Science & Business Media (2001)

    Google Scholar 

  6. Chakib, H., Minaoui, B., Fakir, M., Salhi, A., Badi, I.: A proposed approach for image compression based on wavelet transform and neural network. Int. J. Adv. Comput. Sci. Appl. 8(9) (2017)

    Google Scholar 

  7. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus) (2015). arXiv:1511.07289

  8. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: NIPS (2016)

    Google Scholar 

  9. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning (2016). arXiv:1603.07285

  10. Franzen, R.: Kodak lossless true color image suite, 4(2) (1999). http://r0k.us/graphics/kodak

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2015)

    Google Scholar 

  12. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Google Scholar 

  13. Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)

    Article  MATH  Google Scholar 

  14. IBRAHIM, M.S.: A neural network approach for block coding image compression. In: The International Conference on Electrical Engineering, vol. 2, pp. 278–290. Military Technical College (1999)

    Google Scholar 

  15. Jiang, J.: Image compression with neural networks-a survey. Signal Process. Image Commun. 14(9), 737–760 (1999)

    Article  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv:1412.6980

  17. Kothari, S.C., Oh, H.: Neural networks for pattern recognition. Adv. Comput. 37, 119–166 (1993)

    Article  Google Scholar 

  18. Kramer, M.A.: Nonlinear principal component analysis using auto associative neural networks. AIChE J. 37(2), 233–243 (1991)

    Article  Google Scholar 

  19. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  20. Krizhevsky, A., Hinton, G.E.: Using very deep autoencoders for content-based image retrieval. In: ESANN, vol. 1, p. 2. Citeseer (2011)

    Google Scholar 

  21. Marcellin, M.W., Gormish, M.J., Bilgin, A., Boliek, M.P.: An overview of jpeg-2000. In: Proceedings DCC 2000. Data Compression Conference, pp. 523–541 (2000)

    Google Scholar 

  22. Skodras, A., Christopoulos, C., Ebrahimi, T.: The jpeg 2000 still image compression standard. IEEE Signal Process. Mag. 18(5), 36–58 (2001)

    Article  MATH  Google Scholar 

  23. Stevens, J.C., Stevens, S.S.: Brightness function: Effects of adaptation. JOSA 53(3), 375–385 (1963)

    Article  Google Scholar 

  24. Taubman, D.S., Marcellin, M.W.: Jpeg2000-image compression fundamentals, standards and practice. In: The Kluwer International Series in Engineering and Computer Science (2002)

    Google Scholar 

  25. Theis, L., Shi, W., Cunningham, A., Huszár, F.: Lossy image compression with compressive autoencoders (2017). arXiv:1703.00395

  26. Toderici, G., O’Malley, S.M., Hwang, S.J., Vincent, D., Minnen, D., Baluja, S., Covell, M., Sukthankar, R.: Variable rate image compression with recurrent neural networks (2015). arXiv:1511.06085

  27. Toderici, G., Vincent, D., Johnston, N., Jin Hwang, S., Minnen, D., Shor, J., Covell, M.: Full resolution image compression with recurrent neural networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 5306–5314 (2017)

    Google Scholar 

  28. Tschannen, M., Agustsson, E., Lucic, M.: Deep generative models for distribution-preserving lossy compression. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  29. Union, I.T.: Recommendation itu-r bt. 601–607 (2011)

    Google Scholar 

  30. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  31. Wandell, B.A.: Foundations of Vision. Sinauer Associates (1995)

    Google Scholar 

  32. Wang, W., Huang, Y., Wang, Y., Wang, L.: Generalized autoencoder: A neural network framework for dimensionality reduction. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 496–503 (2014)

    Google Scholar 

  33. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  34. Yang, F., Herranz, L., Van De Weijer, J., Guitián, J.A.I., López, A.M., Mozerov, M.G.: Variable rate deep image compression with modulated autoencoder. IEEE Signal Process. Lett. 27, 331–335 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama Jannani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jannani, O., Idrissi, N., Chakib, H. (2023). An Image Compression Approach Based on Convolutional AutoEncoder. In: Idrissi, N., Hair, A., Lazaar, M., Saadi, Y., Erritali, M., El Kafhali, S. (eds) Artificial Intelligence and Green Computing. ICAIGC 2023. Lecture Notes in Networks and Systems, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-031-46584-0_7

Download citation

Publish with us

Policies and ethics