Skip to main content

Dual Temporal Memory Network for Video Salient Object Detection

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14358))

Included in the following conference series:

  • 316 Accesses

Abstract

Video salient object detection (VSOD) aims at distinguishing the salient objects from the complex background and highlighting them uniformly in the spatiotemporal domain. One of the fundamental challenges in VSOD is how to make the most use of the temporal information to boost the performance. We propose a dual temporal memory network (DTMNet) which stores short- and long-term video sequence information preceding the current frame as the temporal memories to address the temporal modeling in VSOD. The proposed network consists of two temporal modules including a short-term co-inference learning (SCL) sub-module and a long-range memory learning (LML) sub-module. The SCL is designed for inferencing spatiotemporal interactions between neighboring frames of the current input video clip. The LML aims to satisfy the logical reasoning sequence in timeline and learn the long-time range information between current clip and the previous video clips. Comprehensive evaluations well demonstrate the effectiveness and robustness of our proposed architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, Y., et al.: STC: A simple to complex framework for weakly-supervised semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2314–2320 (2017)

    Article  Google Scholar 

  2. Itti, L.: Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans. Image Process. 13(10), 1304–1318 (2004)

    Article  Google Scholar 

  3. Wu, H., Li, G., Luo, X.: Weighted attentional blocks for probabilistic object tracking. Vis. Comput. 30(2), 229–243 (2014)

    Article  Google Scholar 

  4. Zhang, Z., Fidler, S., Urtasun, R.: Instance-level segmentation for autonomous driving with deep densely connected MRFs. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 669–677 (2016)

    Google Scholar 

  5. Song, H., et al.: Pyramid dilated deeper ConvLSTM for video salient object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 744–760. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_44

    Chapter  Google Scholar 

  6. Dosovitskiy, et al.: FlowNet: learning optical flow with convolutional networks. In: IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  7. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3D object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 663–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_39

    Chapter  Google Scholar 

  8. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  9. Yan, P., et al.: Semi-supervised video salient object detection using pseudo-labels. In: IEEE International Conference on Computer Vision, pp. 7284–7293 (2019)

    Google Scholar 

  10. Gu, Y., Wang, L., Wang, Z., Qin, H.: Pyramid constrained self-attention network for fast video salient object detection. In: Association for the Advance of Artificial Intelligence, pp. 10869–10876 (2020)

    Google Scholar 

  11. Li, G., et al.: Flow guided recurrent neural encoder for video salient object detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 3243–3252 (2018)

    Google Scholar 

  12. Wang, W., Shen, J., Shao, L.: Consistent video saliency using local gradient flow optimization and global refinement. IEEE Trans. Image Process. 24, 4185–4196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, C., Li, S., Wang, Y., Qin, H., Hao, A.: Video saliency detection via spatial-temporal fusion and low-rank coherency diffusion. IEEE Trans. Image Process. 26, 3156–3170 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, Z., Zhang, X., Luo, S., Le Meur, O.: Superpixel-based spatiotemporal saliency detection. IEEE Trans. Circ. Syst. Video Technol. 24, 1522–1540 (2014)

    Article  Google Scholar 

  15. Liu, Z., Li, J., Ye, L., Sun, G., Shen, L.: Saliency detection for unconstrained videos using superpixel-level graph and spatiotemporal propagation. IEEE Trans. Circ. Syst. Video Technol. 27, 2527–2542 (2017)

    Article  Google Scholar 

  16. Fang, Y., Lin, W., Chen, Z., Tsai, C., Lin, C.: A video saliency detection model in compressed domain. IEEE Trans. Circuits Syst. Video Technol. 24(1), 27–38 (2014)

    Article  Google Scholar 

  17. Xi, T., Zhao, W., Wang, H., Lin, W.: Salient object detection with spatiotemporal background priors for video. IEEE Trans. Image Process. 26(7), 3425–3436 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Le, T.-N., Sugimoto, A.: Deeply supervised 3D recurrent FCN for salient object detection in videos. In: The 28th British Machine Vision Conference, pp. 1–13 (2017)

    Google Scholar 

  19. Wang, W., Shen, J., Shao, L.: Video salient object detection via fully convolutional networks. IEEE Trans. Image Process. 27, 38–49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, H., Chen, G., Li, G., Yu, Y.: Motion guided attention for video salient object detection. In: IEEE International Conference on Computer Vision, pp. 7274–7283 (2019)

    Google Scholar 

  21. Wang, L., et al.: Learning to detect salient objects with image-level supervision. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 136–145 (2017)

    Google Scholar 

  22. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2017)

    Google Scholar 

  23. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_21

    Chapter  Google Scholar 

  24. Fan, D., Wang, W., Cheng, M., Shen, J.: Shifting more attention to video salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8554–8564 (2019)

    Google Scholar 

  25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Comput. Sci (2014)

    Google Scholar 

  26. Tu, W., He, S., Yang, Q., Chien, S.: Real-time salient object detection with a minimum spanning tree. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2334–2342 (2016)

    Google Scholar 

  27. Hou, Q., Cheng, M., Hu, X., Borji, A., Torr, P.: Deeply supervised salient object detection with short connections. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  28. Zhang, L., Dai, J., Lu, H., Gang, W.: A Bi-directional message passing model for salient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  29. Chen, Y., Zou, W., Tang, Y., Li, X., Xu, C., Komodakis, N.: SCOM: spatiotemporal constrained optimization for salient object detection. IEEE Trans. Image Process. 27, 3345–3357 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, Y., Zou, W., Jin, Z., Chen, Y., Hua, Y., Li, X.: Weakly supervised salient object detection with spatiotemporal cascade neural networks. In: IEEE Transactions on Circuits and Systems for Video Technology, pp. 1973–1984 (2019)

    Google Scholar 

  31. Li, S., Seybold, B., Vorobyov, A., Lei, X., Kuo, C.-C.J.: Unsupervised video object segmentation with motion-based bilateral networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 215–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_13

    Chapter  Google Scholar 

  32. Chen, C., Wang, G., Peng, C., Zhang, X., Qin, H.: Improved robust video saliency detection based on long-term spatial-temporal information. IEEE Trans. Image Process. 29, 1090–1100 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Key Research and Development Program of China under Grant 2018AAA0100400, and in part by the National Science Fund of China under Grant 62272235 and Grand U21B2044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxia Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Li, J., Li, J. (2023). Dual Temporal Memory Network for Video Salient Object Detection. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14358. Springer, Cham. https://doi.org/10.1007/978-3-031-46314-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46314-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46313-6

  • Online ISBN: 978-3-031-46314-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics