Skip to main content

Deep Discriminative Hashing for Cross-Modal Hashing Based Computer-Aided Diagnosis

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14358))

Included in the following conference series:

  • 354 Accesses

Abstract

Massive medical data in multi-modalities emerges with the development of modern medicine, which facilitates the construction of computer-aided diagnosis (CAD) methods. However, most existing CAD methods diagnose diseases only based on the relevant single-modal data, and thus their applications are limited in single modality. To reveal intrinsic connections between heterogeneous modalities and further build multi-modal CAD methods, a novel cross-modal hashing model named Deep Discriminative Hashing (DDH) is proposed. Specifically, semantic labels are encoded to obtain a fixed classifier for the preservation of semantic similarity. Furthermore, benefiting from the classifier, the optimization of hash functions for different modalities is regarded as a classification task that aims to further consider the improvement of discriminability with angular softmax loss. Therefore, DDH projects medical multi-modal data into the common hamming space, and performs multi-modal CAD via cross-modal retrieval. Moreover, since the encoding procedure of different modalities is decoupled, DDH can also execute single-modal CAD based on the medical image retrieval. Experimental results demonstrate the superior accuracy of DDH compared with state-of-the-arts in both medical image retrieval and cross-modal medical data retrieval tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altaf, F., Islam, S.M.S., Akhtar, N., Janjua, N.K.: Going deep in medical image analysis: concepts, methods, challenges, and future directions. IEEE Access 7, 99540–99572 (2019). https://doi.org/10.1109/ACCESS.2019.2929365

    Article  Google Scholar 

  2. Azizi, S., et al.: Big self-supervised models advance medical image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3478–3488, October 2021

    Google Scholar 

  3. Bronstein, M.M., Bronstein, A.M., Michel, F., Paragios, N.: Data fusion through cross-modality metric learning using similarity-sensitive hashing. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3594–3601. IEEE (2010)

    Google Scholar 

  4. Cao, Y., Long, M., Wang, J., Liu, S.: Collective deep quantization for efficient cross-modal retrieval. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  5. Cao, Y., Long, M., Wang, J., Zhu, H.: Correlation autoencoder hashing for supervised cross-modal search. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, pp. 197–204. ACM (2016)

    Google Scholar 

  6. Cao, Z., Long, M., Wang, J., Yu, P.S.: HashNet: deep learning to hash by continuation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5608–5617 (2017)

    Google Scholar 

  7. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)

  8. Deng, C., Chen, Z., Liu, X., Gao, X., Tao, D.: Triplet-based deep hashing network for cross-modal retrieval. IEEE Trans. Image Process. 27(8), 3893–3903 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  10. Ding, G., Guo, Y., Zhou, J., Gao, Y.: Large-scale cross-modality search via collective matrix factorization hashing. IEEE Trans. Image Process. 25(11), 5427–5440 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erfankhah, H., Yazdi, M., Babaie, M., Tizhoosh, H.R.: Heterogeneity-aware local binary patterns for retrieval of histopathology images. IEEE Access 7, 18354–18367 (2019). https://doi.org/10.1109/ACCESS.2019.2897281

    Article  Google Scholar 

  12. Erfankhah, H., Yazdi, M., Babaie, M., Tizhoosh, H.R.: Heterogeneity-aware local binary patterns for retrieval of histopathology images. IEEE Access 7, 18354–18367 (2019)

    Article  Google Scholar 

  13. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Google Scholar 

  14. Fourcade, A., Khonsari, R.: Deep learning in medical image analysis: a third eye for doctors. J. Stomatol. Oral Maxillofac. Surg. 120(4), 279–288 (2019) https://doi.org/10.1016/j.jormas.2019.06.002, https://www.sciencedirect.com/science/article/pii/S2468785519301582, 55th SFSCMFCO Congress

  15. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2012)

    Article  Google Scholar 

  16. Guo, Z., Shen, Y., Wan, S., Shang, W.L., Yu, K.: Hybrid intelligence-driven medical image recognition for remote patient diagnosis in Internet of Medical Things. IEEE J. Biomed. Health Inform. 26(12), 5817–5828 (2022). https://doi.org/10.1109/JBHI.2021.3139541

    Article  Google Scholar 

  17. Hashimoto, N., et al.: Case-based similar image retrieval for weakly annotated large histopathological images of malignant lymphoma using deep metric learning. Med. Image Anal. 85, 102752 (2023)

    Article  Google Scholar 

  18. Hotelling, H.: Relations between two sets of variates. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics, pp. 162–190. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_14

  19. Hu, P., Zhu, H., Lin, J., Peng, D., Zhao, Y.P., Peng, X.: Unsupervised contrastive cross-modal hashing. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3877–3889 (2023). https://doi.org/10.1109/TPAMI.2022.3177356

    Article  Google Scholar 

  20. Hu, Z., Liu, X., Wang, X., Cheung, Y.M., Wang, N., Chen, Y.: Triplet fusion network hashing for unpaired cross-modal retrieval. In: Proceedings of the 2019 on International Conference on Multimedia Retrieval, pp. 141–149 (2019)

    Google Scholar 

  21. Huang, Z., Wang, S., Yu, K.: Angular softmax for short-duration text-independent speaker verification. In: Interspeech, pp. 3623–3627 (2018)

    Google Scholar 

  22. Jiang, Q.Y., Li, W.J.: Deep cross-modal hashing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3232–3240 (2017)

    Google Scholar 

  23. Jiang, Q.Y., Li, W.J.: Discrete latent factor model for cross-modal hashing. IEEE Trans. Image Process. 28(7), 3490–3501 (2019). https://doi.org/10.1109/TIP.2019.2897944

    Article  MathSciNet  MATH  Google Scholar 

  24. Johnson, A.E., et al.: MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs. arXiv preprint arXiv:1901.07042 (2019)

  25. de La Torre, J., Valls, A., Puig, D.: A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing 396, 465–476 (2020)

    Article  Google Scholar 

  26. Li, C., Deng, C., Li, N., Liu, W., Gao, X., Tao, D.: Self-supervised adversarial hashing networks for cross-modal retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4242–4251 (2018)

    Google Scholar 

  27. Li, Q., Sun, Z., He, R., Tan, T.: Deep supervised discrete hashing. In: Advances in Neural Information Processing Systems, pp. 2482–2491 (2017)

    Google Scholar 

  28. Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hashing with pairwise labels. In: Twenty-Fifth International Joint Conference on Artificial Intelligence (2016)

    Google Scholar 

  29. Lin, Z., Ding, G., Han, J., Wang, J.: Cross-view retrieval via probability-based semantics-preserving hashing. IEEE Trans. Cybern. 47(12), 4342–4355 (2016)

    Article  Google Scholar 

  30. Lin, Z., Ding, G., Hu, M., Wang, J.: Semantics-preserving hashing for cross-view retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3864–3872 (2015)

    Google Scholar 

  31. Liu, J., Zhang, S., Liu, W., Deng, C., Zheng, Y., Metaxas, D.N.: Scalable mammogram retrieval using composite anchor graph hashing with iterative quantization. IEEE Trans. Circuits Syst. Video Technol. 27(11), 2450–2460 (2016)

    Article  Google Scholar 

  32. Liu, L., Qi, H.: Discriminative cross-view binary representation learning. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1736–1744. IEEE (2018)

    Google Scholar 

  33. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  34. Maier, A., Syben, C., Lasser, T., Riess, C.: A gentle introduction to deep learning in medical image processing. Z. Med. Phys. 29(2), 86–101 (2019). https://doi.org/10.1016/j.zemedi.2018.12.003, https://www.sciencedirect.com/science/article/pii/S093938891830120X, Special Issue: Deep Learning in Medical Physics

  35. Segovia, F., et al.: Multivariate analysis of dual-point amyloid pet intended to assist the diagnosis of Alzheimer’s disease. Neurocomputing 417, 1–9 (2020)

    Article  Google Scholar 

  36. Shi, X., Sapkota, M., Xing, F., Liu, F., Cui, L., Yang, L.: Pairwise based deep ranking hashing for histopathology image classification and retrieval. Pattern Recogn. 81, 14–22 (2018)

    Article  Google Scholar 

  37. Shi, Y., You, X., Zheng, F., Wang, S., Peng, Q.: Equally-guided discriminative hashing for cross-modal retrieval. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 4767–4773. AAAI Press (2019)

    Google Scholar 

  38. Wang, D., Gao, X., Wang, X., He, L.: Semantic topic multimodal hashing for cross-media retrieval. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  39. Wang, D., Gao, X., Wang, X., He, L., Yuan, B.: Multimodal discriminative binary embedding for large-scale cross-modal retrieval. IEEE Trans. Image Process. 25(10), 4540–4554 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Information Processing Systems, pp. 1753–1760 (2009)

    Google Scholar 

  41. Xing, F., Yang, L.: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev. Biomed. Eng. 9, 234–263 (2016)

    Article  Google Scholar 

  42. Xu, X., Shen, F., Yang, Y., Shen, H.T.: Discriminant cross-modal hashing. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, pp. 305–308. ACM (2016)

    Google Scholar 

  43. Yu, J., Wu, X.J., Kittler, J.: Discriminative supervised hashing for cross-modal similarity search. Image Vis. Comput. 89, 50–56 (2019)

    Article  Google Scholar 

  44. Zhang, D., Li, W.J.: Large-scale supervised multimodal hashing with semantic correlation maximization. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  45. Zhang, J., Xie, Y., Wu, Q., Xia, Y.: Medical image classification using synergic deep learning. Med. Image Anal. 54, 10–19 (2019)

    Article  Google Scholar 

  46. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Attention residual learning for skin lesion classification. IEEE Trans. Med. Imaging 38(9), 2092–2103 (2019)

    Article  Google Scholar 

  47. Zhang, Y., Ou, W., Zhang, J., Deng, J.: Category supervised cross-modal hashing retrieval for chest X-ray and radiology reports. Comput. Electr. Eng. 98, 107673 (2022). https://doi.org/10.1016/j.compeleceng.2021.107673, https://www.sciencedirect.com/science/article/pii/S0045790621005942

  48. Zheng, Y., et al.: Encoding histopathology whole slide images with location-aware graphs for diagnostically relevant regions retrieval. Med. Image Anal. 76, 102308 (2022)

    Article  Google Scholar 

  49. Zhu, H., Long, M., Wang, J., Cao, Y.: Deep hashing network for efficient similarity retrieval. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuFeng Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, C., Shi, Y. (2023). Deep Discriminative Hashing for Cross-Modal Hashing Based Computer-Aided Diagnosis. In: Lu, H., et al. Image and Graphics . ICIG 2023. Lecture Notes in Computer Science, vol 14358. Springer, Cham. https://doi.org/10.1007/978-3-031-46314-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46314-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46313-6

  • Online ISBN: 978-3-031-46314-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics