Skip to main content

Incorporating Global Correlation and Local Aggregation for Efficient Visual Localization

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14356))

Included in the following conference series:

  • 308 Accesses

Abstract

Scene coordinate regression has made significant improvements in visual localization by voting with segmentation strategy, which first segments landmark patches and then votes landmark points within each patch. However, such method ignores global correlations between patches and lacks local aggregation of voting directions. In this paper, we present a new visual localization framework based on an efficient vision transformer and voting aggregation loss. Specifically, we introduce a global correlation feature extractor to capture the correlated features of global information and employ differentiable angular loss to enhance the aggregation of local voting directions, thus improving the accuracy and robustness of visual localization. Extensive experiments are conducted on the 7-scenes and Cambridge Landmarks datasets. Results show that our method is superior to the scene coordinate regression method on both datasets, demonstrating the effectiveness of this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5297–5307 (2016)

    Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  3. Brachmann, E., et al.: DSAC-differentiable RANSAC for camera localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6684–6692 (2017)

    Google Scholar 

  4. Brachmann, E., Rother, C.: Learning less is more-6D camera localization via 3D surface regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4654–4662 (2018)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  6. DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Fan, H., Zhou, Y., Li, A., Gao, S., Li, J., Guo, Y.: Visual localization using semantic segmentation and depth prediction. arXiv preprint arXiv:2005.11922 (2020)

  9. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Hu, Y., Hugonot, J., Fua, P., Salzmann, M.: Segmentation-driven 6D object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3385–3394 (2019)

    Google Scholar 

  11. Huang, Z., et al.: VS-Net: voting with segmentation for visual localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6101–6111 (2021)

    Google Scholar 

  12. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946 (2015)

    Google Scholar 

  13. Larsson, M., Stenborg, E., Toft, C., Hammarstrand, L., Sattler, T., Kahl, F.: Fine-grained segmentation networks: self-supervised segmentation for improved long-term visual localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 31–41 (2019)

    Google Scholar 

  14. Li, X., Wang, S., Zhao, Y., Verbeek, J., Kannala, J.: Hierarchical scene coordinate classification and regression for visual localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11983–11992 (2020)

    Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)

    Article  Google Scholar 

  17. Mehta, S., Rastegari, M.: Separable self-attention for mobile vision transformers. arXiv preprint arXiv:2206.02680 (2022)

  18. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136. IEEE (2011)

    Google Scholar 

  19. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6DoF pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4561–4570 (2019)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  21. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  23. Sarlin, P.E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: robust hierarchical localization at large scale. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12716–12725 (2019)

    Google Scholar 

  24. Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2D-to-3D matching. In: 2011 International Conference on Computer Vision, pp. 667–674. IEEE (2011)

    Google Scholar 

  25. Sattler, T., Leibe, B., Kobbelt, L.: Improving image-based localization by active correspondence search. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision-ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012, Proceedings, Part I 12, vol. 7572, pp. 752–765. Springer, Cham (2012). https://doi.org/10.1007/978-3-642-33718-5_54

  26. Sattler, T., Leibe, B., Kobbelt, L.: Efficient & effective prioritized matching for large-scale image-based localization. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1744–1756 (2016)

    Article  Google Scholar 

  27. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  28. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2930–2937 (2013)

    Google Scholar 

  29. Stenborg, E., Toft, C., Hammarstrand, L.: Long-term visual localization using semantically segmented images. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6484–6490. IEEE (2018)

    Google Scholar 

  30. Valentin, J., Nießner, M., Shotton, J., Fitzgibbon, A., Izadi, S., Torr, P.H.: Exploiting uncertainty in regression forests for accurate camera relocalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4400–4408 (2015)

    Google Scholar 

  31. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  32. Wu, C.: VisualSFM: a visual structure from motion system (2011). http://www.cs.washington.edu/homes/ccwu/vsfm

  33. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)

  34. Xu, Y., et al.: SelfVoxeLO: self-supervised lidar odometry with voxel-based deep neural networks. In: Conference on Robot Learning, pp. 115–125. PMLR (2021)

    Google Scholar 

  35. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  36. Yu, X., Zhuang, Z., Koniusz, P., Li, H.: 6DoF object pose estimation via differentiable proxy voting loss. arXiv preprint arXiv:2002.03923 (2020)

  37. Zhang, G., Dong, Z., Jia, J., Wong, T.-T., Bao, H.: Efficient non-consecutive feature tracking for structure-from-motion. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 422–435. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_31

    Chapter  Google Scholar 

  38. Zhong, Z., et al.: Squeeze-and-attention networks for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13065–13074 (2020)

    Google Scholar 

  39. Zhou, G., Bescos, B., Dymczyk, M., Pfeiffer, M., Neira, J., Siegwart, R.: Dynamic objects segmentation for visual localization in urban environments. arXiv preprint arXiv:1807.02996 (2018)

  40. Zhu, S., et al.: Parallel structure from motion from local increment to global averaging. arXiv preprint arXiv:1702.08601 (2017)

  41. Liu, J., Nie, Q., Liu, Y., Wang, C.: NeRF-Loc: visual localization with conditional neural radiance field. CoRR abs/2304.07979 (2023)

    Google Scholar 

  42. Zhou, Q., Agostinho, S., Osep, A., Leal-Taix e, L.: Is geometry enough for matching in visual localization? In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022–17th European Conference, Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part X. LNCS, vol. 13670, pp. 407–425. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20080-9_24

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (No. 62302220), in part by the China Postdoctoral Foundation (No. 2023M731691), and in part by the Jiangsu Funding Program for Excellent Postdoctoral Talent (No. 2022ZB268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, D., Lu, J., Song, Z., Chen, X. (2023). Incorporating Global Correlation and Local Aggregation for Efficient Visual Localization. In: Lu, H., et al. Image and Graphics. ICIG 2023. Lecture Notes in Computer Science, vol 14356. Springer, Cham. https://doi.org/10.1007/978-3-031-46308-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46308-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46307-5

  • Online ISBN: 978-3-031-46308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics