Skip to main content

Effects of Lead: Neurological and Cellular Perspective

  • Chapter
  • First Online:
Lead Toxicity Mitigation: Sustainable Nexus Approaches

Abstract

Lead exposure is a serious public health concern with significant neurological and cellular effects. This chapter examines the effects of lead on brain development, neurotransmitter function, and cellular processes from a neurological and cellular perspective. Lead exposure during critical periods of brain development can result in structural and functional changes in the brain, leading to cognitive and behavioral deficits. Alterations in neurotransmitter function, such as dopamine, serotonin, and glutamate, can contribute to the development of neurological conditions. At the cellular level, lead can interfere with mitochondrial function and oxidative stress, leading to cell death and inflammation. In addition, lead exposure can have long-term effects, contributing to the development of neurological disorders such as Parkinson’s disease and Alzheimer’s disease. While the exact mechanisms of lead toxicity are still being investigated, effective strategies to prevent lead exposure are critical, including reducing lead in the environment, improving screening and remediation efforts, and increasing public awareness of the risks associated with lead exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamed M, Siddiqui MK (2007) Environmental lead toxicity and nutritional factors. Clin Nutr 26(4):400–408

    Article  PubMed  CAS  Google Scholar 

  • Almutairi MM, Nadeem A, Ansari MA, Bakheet SA, Attia SM, Albekairi TH, Ahmad SF (2022) Lead (Pb) exposure exacerbates behavioral and immune abnormalities by upregulating Th17 and NF-κB-related signaling in BTBR T+ Itpr3tf/J autistic mouse model. Neurotoxicology 91:340–348

    Article  PubMed  CAS  Google Scholar 

  • Atchison WD (1988) Effects of neurotoxicants on synaptic transmission: lessons learned from electrophysiological studies. Neurotoxicol Teratol 10(5):393–416

    Article  PubMed  CAS  Google Scholar 

  • Bellinger DC (2004) Lead. Pediatrics 113(4 Suppl):1016–1022

    Article  PubMed  Google Scholar 

  • Bjorklund G, Stejskal V, Urbina MA, Dadar M, Chirumbolo S, Mutter J (2018) Metals and Parkinson’s disease: mechanisms and biochemical processes. Curr Med Chem 25(19):2198–2214

    Article  PubMed  CAS  Google Scholar 

  • Bouchard MF, Bellinger DC, Weuve J, Matthews-Bellinger J, Gilman SE, Wright RO, Weisskopf MG (2009) Blood lead levels and major depressive disorder, panic disorder, and generalized anxiety disorder in US young adults. Arch Gen Psych 66(12):1313–1319

    Article  Google Scholar 

  • Braun JM, Froehlich TE, Daniels JL, Dietrich KN, Hornung R, Auinger P, Lanphear BP (2008) Association of environmental toxicants and conduct disorder in US children: NHANES 2001–2004. Environ Health Perspect 116(7):956–962

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruno CRN, Risso WE, dos Reis Martinez CB (2016) Lead accumulation and metallothionein content in female rats of different ages and generations after daily intake of Pb-contaminated food. Environ Toxicol Pharmacol 48:272–277

    Article  Google Scholar 

  • Byers RK, Lord EE (1943) Late effects of lead poisoning on mental development. Am J Dis Child 66(5):471–494

    CAS  Google Scholar 

  • Canfield RL, Henderson CR, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP et al (2003) Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med 348:1517–1526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chasapis CT (2018) Shared gene-network signatures between the human heavy metal proteome and neurological disorders and cancer types. Metallomics 10(11):1678–1686

    Article  PubMed  CAS  Google Scholar 

  • Cory-Slechta DA, Brockel BJ, O’Mara DJ (1997) Lead exposure and the central nervous system: neural mechanisms of lead-induced neurotoxicity. Curr Opin Neurol 10(3):193–198

    Google Scholar 

  • Dietert RR, Lee JE, Hussain I, Piepenbrink MS (2004) Developmental immunotoxicology of lead. Toxicol Appl Pharmacol 198(2):86–94

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein Y, Markowitz ME, Rosen JF (1998) Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain Res Rev 27(2):168–176

    Article  PubMed  CAS  Google Scholar 

  • Flora SJ (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev 2(4):191–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasmi A, Noor S, Piscopo S, Menzel A (2022) Toxic metal–mediated neurodegradation: a focus on glutathione and GST gene variants. Arch Razi Instit 77(2):525–536

    CAS  Google Scholar 

  • Gąssowska M, Baranowska-Bosiacka I, Moczydłowska J, Tarnowski M, Pilutin A, Gutowska I, Adamczyk A (2016) Perinatal exposure to lead (Pb) promotes Tau phosphorylation in the rat brain in a GSK-3β and CDK5 dependent manner: relevance to neurological disorders. Toxicology 347:17–28

    Article  PubMed  Google Scholar 

  • GoERING PL (1993) Lead-protein interactions as a basis for lead toxicity. Neurotoxicology 14(2):45–60

    PubMed  CAS  Google Scholar 

  • Green AJ, Planchart A (2018) The neurological toxicity of heavy metals: a fish perspective. Compar Biochem Physiol C Toxicol Pharmacol 208:12–19

    Article  CAS  Google Scholar 

  • Guilarte TR, McGlothan JL (1998) Selective decrease in NR1 subunit splice variant mRNA in the hippocampus of Pb2+-exposed rats: implications for synaptic targeting and cell surface expression of NMDAR complexes. Brain Res Mol Brain Res 56(1–2):151–157

    Google Scholar 

  • Guilarte TR, Miceli RC (1992) Age-dependent effects of lead on the dopamine system and behavior in the rat. Brain Res 586(2):224–232

    Google Scholar 

  • Guilarte TR, Toscano CD, McGlothan JL, Weaver SA (2003) Environmental enrichment reverses cognitive and molecular deficits induced by developmental lead exposure. Ann Neurol 53(1):50–56

    Article  PubMed  CAS  Google Scholar 

  • Ha M, Kwon HJ, Lim MH, Jee YK, Hong YC, Leem JH, Jo SJ (2009) Low blood levels of lead and mercury and symptoms of attention deficit hyperactivity in children: a report of the children’s health and environment research (CHEER). Neurotoxicology 30(1):31–36

    Article  PubMed  CAS  Google Scholar 

  • Heo Y, Parsons PJ, Lawrence DA (1996) Lead differentially modifies cytokine production in vitro and in vivo. Toxicol Appl Pharmacol 137(1):73–81

    Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87

    Article  PubMed  CAS  Google Scholar 

  • Koller LD, Exon JH (2001) The immunotoxicity of environmental lead. Environ Health Perspect 109(Suppl 1):21–45

    Google Scholar 

  • Lanphear BP, Hornung R, Khoury J et al (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113(7):894–899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Freeman JL (2014) Zebrafish as a model for investigating developmental lead (Pb) neurotoxicity as a risk factor in adult neurodegenerative disease: a mini-review. Neurotoxicology 43:57–64

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Freeman JL (2020) Exposure to the heavy-metal lead induces DNA copy number alterations in zebrafish cells. Chem Res Toxicol 33(8):2047–2053

    Article  PubMed  CAS  Google Scholar 

  • Lepper TW, Oliveira E, Koch GDW, Berlese DB, Feksa LR (2010) Lead inhibits in vitro creatine kinase and pyruvate kinase activity in brain cortex of rats. Toxicol Vitro 24(3):1045–1051

    Article  CAS  Google Scholar 

  • Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126(1):5–19

    Article  PubMed  Google Scholar 

  • Liu J et al (2013) Impact of low blood lead concentrations on IQ and school performance in Chinese children. PLoS ONE 8(5):e65230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luster MI, Simeonova PP, Gallucci RM et al (1998) Role of inflammation in chemical-induced hepatotoxicity. Toxicol Appl Pharmacol 153(2):136

    Google Scholar 

  • Maeda N, Shimizu S, Takahashi Y et al (2022) Oral exposure to lead acetate for 28 days reduces the number of neural progenitor cells but increases the number and synaptic plasticity of newborn granule cells in adult hippocampal neurogenesis of young-adult rats. Neurotox Res 40:2203–2220

    Article  PubMed  CAS  Google Scholar 

  • Mason LH, Harp JP, Han DY (2014) Pb neurotoxicity: neuropsychological effects of lead toxicity. BioMed Res Int 2014:1–8

    Google Scholar 

  • McElvania Tekippe E, Allen IC, Hulseberg PD et al (2018) Granulocyte/macrophage colony-stimulating factor (CSF) and CSF-1 receptor pathways cooperate in the differentiation of microglia into a unique intermediate stage. J Neuroinflamm 15(1):268

    Google Scholar 

  • Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ (2007) Lead exposure and cardiovascular disease: a systematic review. Environ Health Perspect 115(3):472–482

    Article  PubMed  CAS  Google Scholar 

  • Needleman HL (2004) Lead poisoning. Annu Rev Med 55:209–222

    Article  PubMed  CAS  Google Scholar 

  • Needleman HL, Gunnoe C, Leviton A, Reed R, Peresie H, Maher C, Barrett P (1979) Deficits in psychologic and classroom performance of children with elevated dentine lead levels. New Engl J Med 300(13):689–695

    Article  PubMed  CAS  Google Scholar 

  • Nemsadze K, Sanikidze T, Ratiani L, Gabunia L, Sharashenidze T (2009) Mechanisms of lead-induced poisoning. Georg Med News 172–173:92–96

    Google Scholar 

  • Nigg JT, Knottnerus GM, Martel MM, Nikolas M, Cavanagh K, Karmaus W, Rappley MD (2008) Low blood lead levels associated with clinically diagnosed attention-deficit/hyperactivity disorder and mediated by weak cognitive control. Biol Psych 63(3):325–331

    Article  CAS  Google Scholar 

  • Olung NF, Aluko OM, Jeje SO, Adeagbo AS, Ijomone OM (2021) Vascular dysfunction in the brain; implications for heavy metal exposures. Curr Hypertens Rev 17(1):5–13

    Article  PubMed  CAS  Google Scholar 

  • Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK (2021) Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262:128350

    Article  PubMed  CAS  Google Scholar 

  • Patrick L (2006a) Lead toxicity, a review of the literature. Part 1: exposure, evaluation, and treatment. Altern Med Rev. 11(1):2–22

    PubMed  Google Scholar 

  • Patrick L (2006b) Lead toxicity, a review of the literature Part 2: the clinical implications. Altern Med Rev 11(2):114–127

    PubMed  Google Scholar 

  • Patrick L (2006c) Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 11(2):1287

    Google Scholar 

  • Raj K, Kaur P, Gupta GD, Singh S (2021) Metals associated neurodegeneration in Parkinson’s disease: insight to physiological, pathological mechanisms and management. Neurosci Lett 753:135873

    Article  PubMed  CAS  Google Scholar 

  • Rice DC (2000) Parallels between attention deficit hyperactivity disorder and behavioral deficits produced by neurotoxic exposure in monkeys. Environ Health Perspect 108(suppl 3):405–408

    Article  PubMed  PubMed Central  Google Scholar 

  • Rocha A, Trujillo KA (2019) Neurotoxicity of low-level lead exposure: History, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 73:58–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosati E, Sabatini R, Rampino T et al (2021) Involvement of TLR4 and PPAR α receptors in hippocampal inflammation and oxidative stress following exposure to a high-fat diet and air pollution. Environ Pollut 268(Pt A):115918

    Google Scholar 

  • Sanders T, Liu Y, Buchner V, Tchounwou PB (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health 24(1):15–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savolainen KM, Loikkanen J, Eerikäinen S, Naarala J (1998) Interactions of excitatory neurotransmitters and xenobiotics in excitotoxicity and oxidative stress: glutamate and lead. Toxicol Lett 102:363–367

    Article  PubMed  Google Scholar 

  • Shih RA, Hu H, Weisskopf MG, Schwartz BS (2007) Cumulative lead dose and cognitive function in adults: a review of studies that measured both blood lead and bone lead. Environ Health Perspect 115(3):483–492

    Article  PubMed  CAS  Google Scholar 

  • Taiwo OA, Maroufi A, Bello OS (2018) Genotoxicity and potential carcinogenicity of lead: current perspectives and future directions. Front Public Health 6:254

    Google Scholar 

  • Wang J, Feng W, Zhao Y et al (2015) Effects of lead exposure on T lymphocyte subsets and serum cytokines in workers. Biol Trace Elem Res 168(1):66–72

    Google Scholar 

  • Wang SS, Xu X, Lu AX, Li WH, Liu JX, Liu C, Yan CH (2022) Amelioration of cholesterol sulfate for lead-induced CTX cell apoptosis based on BDNF signaling pathway mediated cholesterol metabolism. Ecotoxicol Environ Saf 248:114307

    Article  PubMed  CAS  Google Scholar 

  • Wani AL, Ara A, Usmani JA (2015) Lead toxicity: a review. Interdiscip Toxicol 8(2):55–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winneke G (2011) Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls. J Neurol Sci 308(1–2):9–15

    Article  PubMed  CAS  Google Scholar 

  • Wu YC, Lin YC, Yu HL, Chen JH, Chen TF, Sun Y (2020) Increased risk of Alzheimer’s disease in individuals with exposure to lead: a systematic review and meta-analysis. Sci Total Environ 707:135–213

    Google Scholar 

  • Yang M, Li Y, Wang Y, Cheng N, Zhang Y, Pang S, Shen Q, Zhao L, Li G, Zhu G (2018) The effects of lead exposure on the expression of HMGB1 and HO-1 in rats and PC12 cells. Toxicol Lett 288:111–118

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Li X, Jiang A, Li X, Chang W, Chen J, Ye F (2020) Metformin alleviates lead-induced mitochondrial fragmentation via AMPK/Nrf2 activation in SH-SY5Y cells. Redox Biol 36:101626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou R, Zhao J, Li D, Chen Y, Xiao Y, Fan A, Wang HL (2020) Combined exposure of lead and cadmium leads to the aggravated neurotoxicity through regulating the expression of histone deacetylase 2. Chemosphere 252:126589

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanchal Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, C., Singh, R., Shekhar, A. (2024). Effects of Lead: Neurological and Cellular Perspective. In: Kumar, N., Jha, A.K. (eds) Lead Toxicity Mitigation: Sustainable Nexus Approaches. Environmental Contamination Remediation and Management. Springer, Cham. https://doi.org/10.1007/978-3-031-46146-0_2

Download citation

Publish with us

Policies and ethics