Skip to main content

Part of the book series: Environmental Science and Engineering ((ESE))

  • 99 Accesses

Abstract

The growing exposure in the nanotoxicology field revealed the considerably notable toxic nature of nanomaterials. Studies have displayed that carbon nanotubes, quantum dots, metal oxide nanoparticles, metal nanoparticles (gold, silver, platinum, palladium etc.), and silica nanoparticles can cause cellular disruption. It is highly essential to understand the properties of nanomaterials and how they affect the human body. For toxicity evaluation, a thorough investigation of physicochemical properties, contamination of toxic materials, and cellular morphology of nanomaterials on intrinsic and extrinsic levels are needed. Several factors, i.e., synthesis, pH, size, shape, temperature, crystallinity index and solubility, influences nanomaterial characteristics. Inflammation and oxidative stress are two primary mechanisms illustrating the toxic nature of nanomaterials. The chapter focuses on practical methods and mechanism of nanomaterials toxicology and provides a critical hypothesis of the leading obstacles this field faces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61(6):457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxici-ty. Biointerphases 2(4):MR17–MR71

    Google Scholar 

  • De Stefano D, Carnuccio R, Maiuri MC (2012) Nanomaterials toxicity and cell death modalities. J Drug Deliv. https://doi.org/10.1155/2012/167896

  • Farnoud AM, Nazemidashtarjandi S (2019) Emerging investigator series: interactions of engineered nanomateri-als with the cell plasma membrane; what have we learned from membrane models? Environ Sci Nano 6(1):13–40

    Article  CAS  Google Scholar 

  • Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxy-gen species. J Food Drug Anal 22(1):64–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int. https://doi.org/10.1155/2014/498420

  • Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc 9(2):125–144

    Article  Google Scholar 

  • He W, Liu Y, Wamer WG, Yin JJ (2014a) Electron spin resonance spectroscopy for the study of nanomateri-al-mediated generation of reactive oxygen species. J Food Drug Anal 22(1):49–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain SM, Braydich‐Stolle LK, Schrand AM, Murdock RC, Yu KO, Mattie DM et al (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21(16):1549–1559

    Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int. https://doi.org/10.1155/2013/942916

  • Migliore L, Uboldi C, Di Bucchianico S, Coppedè F (2015) Nanomaterials and neurodegenera-tion. Environ Mol Mutagen 56(2):149–170

    Article  CAS  PubMed  Google Scholar 

  • Monteiro-Riviere NA, Inman AO (2006) Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44(6):1070–1078

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Google Scholar 

  • Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nano-materials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Setyawati MI, Tay CY, Leong DT (2013) Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials 34(38):10133–10142

    Article  CAS  PubMed  Google Scholar 

  • Setyawati MI, Tay CY, Chia SL, Goh SL, Fang W, Neo MJ, Chong HC, Tan SM, Loo SC, Ng KW, Xie JP (2013) Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE–cadherin. Nat Commun 4(1):1–12

    Google Scholar 

  • Setyawati MI, Tay CY, Chia SL, Goh SL, Fang W, Neo MJ et al (2015) Epigenetic mechanisms in nanomaterial-induced toxicity. Epigenomics 7(3):395–411

    Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomateri-als. Chem Soc Rev 41(6):2323–2343

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23–24):3891–3914.

    Google Scholar 

  • Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composi-tion, size, and cell type dependent. Part Fibre Toxicol 7(1):1–17

    Article  Google Scholar 

  • Tay CY, Setyawati MI, Xie J, Parak WJ, Leong DT (2014) Back to basics: exploiting the innate physi-co-chemical characteristics of nanomaterials for biomedical applications. Adv Func Mater 24(38):5936–5955

    Article  CAS  Google Scholar 

  • Unfried K, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RP (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1(1):52–71

    Article  CAS  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21

    Google Scholar 

  • Yan L, Gu Z, Zhao Y (2013) Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species. Chemistry–An Asian J 8(10):2342–2353

    Google Scholar 

  • Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and geno-toxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29(1):69–78

    Article  PubMed  Google Scholar 

  • Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q, Li P (2020) Reactive oxygen species-related nanoparticle tox-icity in the biomedical field. Nanoscale Res Lett 15(1):1–14

    Article  ADS  Google Scholar 

  • Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y (2013) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46(3):622–631

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasish Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, D., Dutta, S. (2024). Nanomaterials Prone Cell Leakiness: A Mechanistic Approach. In: Shah, M.P., Bharadvaja, N., Kumar, L. (eds) Biogenic Nanomaterials for Environmental Sustainability: Principles, Practices, and Opportunities. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-45956-6_11

Download citation

Publish with us

Policies and ethics