Skip to main content

Silicon-Based Technologies for High-Temperature Coatings and Their Corrosion Behaviours

  • Chapter
  • First Online:
Coatings for High-Temperature Environments

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 236 Accesses

Abstract

Polymers based on silicon make excellent materials for coating applications in industrial sectors, manufacturing, energy sector, transportation, waste remediation, nuclear, space, etc. Coatings that withstand high temperatures offer compatibility with the environment as well as substrates play a crucial role. Strong adherence to the majority of surfaces, as well as good chemical, thermal and UV resistance, are only a few of these compounds’ outstanding qualities. In some situations, chemical processes or radiation can also be used to turn them into ceramic materials, in addition to heat treatment. Since they were first used in specialised, high-performance coatings, silicon-based technologies have become widely used in the coatings sector along with solar applications, functional qualities and high-temperature stability are also required for coatings. The current chapter examines several silicon-based technology high-temperature applications and corrosion mitigation where coatings play a crucial role and the parameters influencing their selection and processing step have been elaborated. Components that run at extremely high temperatures, such as gas turbines, jet engines and industrial plants, are subject to a phenomenon known as high-temperature corrosion. Every aspect of our existence is affected by corrosion, including buildings, bridges, utilities, as well as automobiles, trains and other moving vehicles. A crucial method of corrosion mitigation is coating. In most cases, corrosion happens when conductive ions, water and oxygen form an electrochemical cell on the metal surface. The formulator can lengthen the lifespan of the coated object and increase the longevity of a paint layer by limiting the penetration of these corrosion-causing substances. More formulators are able to meet stringent application requirements thanks to customised chemistries and efficient performance. This chapter examines the range of silicon-based technologies and the recent upsurge in silicon-based products. This chapter ends by discussing new surveys on coating qualities, providing advice to coatings formulators on how to employ silicon-based technology to improve their products and discussing the application of silicon-based coating to protect metallic alloys from high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EBCs:

Environmental Barrier Coatings

CVD:

Chemical Vapour Deposition

SBT:

Silicon-Based Technology

PVD:

Physical Vapour Deposition

References

  1. Colombo, P., Mera, G., Riedel, R., Soraru, G.D.: Polymer‐derived ceramics: 40 years of research and innovation in advanced ceramics. Ceram. Sci. Technol. 245–320 (2013)

    Google Scholar 

  2. Plueddemann, E.P.: Silane adhesion promoters in coatings. Prog. Org. Coat. 11(3), 297–308 (1983)

    Article  CAS  Google Scholar 

  3. Aegerter, M.A., Mennig, M., (eds.): Sol-Gel Technologies for Glass Producers and Users. Springer Science & Business Media (2013)

    Google Scholar 

  4. Colombo, P., (ed.): Polymer Derived Ceramics: from Nano-Structure to Applications. DEStech Publications Inc. (2010)

    Google Scholar 

  5. Stern, K.H., (ed.): Metallurgical and Ceramic Protective Coatings. Springer Science & Business Media (1996)

    Google Scholar 

  6. Al-Asadi, M.M.. Al-Tameemi, H.A.: A review of tribological properties and deposition methods for selected hard protective coatings. Tribol. Int. 107919 (2022)

    Google Scholar 

  7. Brinker, C.J.: Dip coating. In: Chemical Solution Deposition of Functional Oxide Thin Films, pp. 233–261 (2013)

    Google Scholar 

  8. Yimsiri, P., Mackley, M.R.: Spin and dip coating of light-emitting polymer solutions: matching experiment with modelling. Chem. Eng. Sci. 61(11), 3496–3505 (2006)

    Article  CAS  Google Scholar 

  9. Aegerter, M.A., Puetz, J., Gasparro, G., Al-Dahoudi, N.: Versatile wet deposition techniques for functional oxide coatings. Opt. Mater. 26(2), 155–162 (2004)

    Article  CAS  Google Scholar 

  10. Krebs, F.C.: Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009)

    Article  CAS  Google Scholar 

  11. Norrman, K., Ghanbari-Siahkali, A., Larsen, N.B.: 6 Studies of spin-coated polymer films. Ann. Rep. Sect. “C” (Phys. Chem.) 101, 174–201 (2005)

    Google Scholar 

  12. Barroso, G., Li, Q., Bordia, R.K., Motz, G.: Polymeric and ceramic silicon-based coatings—A review. J. Mater. Chem. A 7(5), 1936–1963 (2019)

    Article  CAS  Google Scholar 

  13. Labrousse, M., Nanot, M., Boch, P., Chassagneux, E.: Ex-polymer SiC coatings with Al2O3 particulates as filler materials. Ceram. Int. 19(4), 259–267 (1993)

    Article  CAS  Google Scholar 

  14. Wiley, J., Sons.: Processing and Finishing of Polymeric Materials, 2 Volume Set. John Wiley & Sons (2011)

    Google Scholar 

  15. Ichiki, M., Zhang, L., Yang, Z., Ikehara, T., Maeda, R.: Thin film formation on non-planar surface with use of spray coating fabrication. Microsyst. Technol. 10, 360–363 (2004)

    Article  CAS  Google Scholar 

  16. Girotto, C., Rand, B.P., Genoe, J., Heremans, P.: Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells. Sol. Energy Mater. Sol. Cells 93(4), 454–458 (2009)

    Article  CAS  Google Scholar 

  17. Greil, P.: Polymer derived engineering ceramics. Adv. Eng. Mater. 2(6), 339–348 (2000)

    Article  CAS  Google Scholar 

  18. Riedel, R., Mera, G., Hauser, R., Klonczynski, A.: Silicon-based polymer-derived ceramics: synthesis properties and applications-a review. J. Ceram. Soc. Jpn. 114(1330), 425–444 (2006)

    Article  CAS  Google Scholar 

  19. Bill, J., Aldinger, F.: Precursor-derived covalent ceramics. Adv. Mater. 7(9), 775–787 (1995)

    Article  CAS  Google Scholar 

  20. Neumann, T.V., Kara, B., Sargolzaeiaval, Y., Im, S., Ma, J., Yang, J., Ozturk, M.C., Dickey, M.D.:Aerosol spray deposition of liquid metal and elastomer coatings for rapid processing of stretchable electronics. Micromachines 12, 146 (2021)

    Google Scholar 

  21. Chantrell, P.G., Popper, P.: Inorganic polymers and ceramics. Special Ceram. 67 (1965)

    Google Scholar 

  22. Schwartz, K.B., Rowcliffe, D.J.: Modeling density contributions in preceramic polymer/ceramic powder systems. J. Am. Ceram. Soc. 69(5), C-106 (1986)

    Google Scholar 

  23. Barroso, G.S., Krenkel, W., Motz, G.: Low thermal conductivity coating system for application up to 1000 C by simple PDC processing with active and passive fillers. J. Eur. Ceram. Soc. 35(12), 3339–3348 (2015)

    Article  CAS  Google Scholar 

  24. Zhu, Y., Hou, G., Wang, Q., Zhu, T., Sun, T., Xu, J., Chen, K.: Silicon-based spectrally selective emitters with good high-temperature stability on stepped metasurfaces. Nanoscale 14(30), 10816–10822 (2022)

    Article  CAS  Google Scholar 

  25. Greil, P.: Near net shape manufacturing of polymer derived ceramics. J. Eur. Ceram. Soc. 18(13), 1905–1914 (1998)

    Article  CAS  Google Scholar 

  26. Hennige, V.D., Hauβelt, J., Ritzhaupt-Kleissl, H.J., Windmann, T.: Shrinkage-free ZrSiO4-ceramics: characterisation and applications. J. Eur. Ceram. Soc. 19(16), 2901–2908 (1999)

    Article  CAS  Google Scholar 

  27. Leite, M.L., Barroso, G., Parchovianský, M., Galusek, D., Ionescu, E., Krenkel, W., Motz, G.: Synthesis and characterization of yttrium and ytterbium silicates from their oxides and an oligosilazane by the PDC route for coating applications to protect Si3N4 in hot gas environments. J. Eur. Ceram. Soc. 37(16), 5177–5191 (2017)

    Article  Google Scholar 

  28. Torrey, J.D., Bordia, R.K., Henager, C.H., Blum, Y., Shin, Y., Samuels, W.D.: Composite polymer derived ceramic system for oxidizing environments. J. Mater. Sci. 41, 4617–4622 (2006)

    Article  CAS  Google Scholar 

  29. Torrey, J.D., Bordia, R.K.: Processing of polymer-derived ceramic composite coatings on steel. J. Am. Ceram. Soc. 91(1), 41–45 (2008)

    Article  CAS  Google Scholar 

  30. Wang, K., Günthner, M., Motz, G., Bordia, R.K.: High performance environmental barrier coatings, Part II: active filler loaded SiOC system for superalloys. J. Eur. Ceram. Soc. 31(15), 3011–3020 (2011)

    Article  CAS  Google Scholar 

  31. Bai, J., Maute, K., Shah, S.R., Raj, R.: Mechanical design for accommodating thermal expansion mismatch in multilayer coatings for environmental protection at ultrahigh temperatures. J. Am. Ceram. Soc. 90(1), 170–176 (2007)

    Article  CAS  Google Scholar 

  32. Picard, L., Phalip, P., Fleury, E., Ganachaud, F.: Chemical adhesion of silicone elastomers on primed metal surfaces: a comprehensive survey of open and patent literatures. Prog. Org. Coat. 80, 120–141 (2015)

    Article  CAS  Google Scholar 

  33. Hou, G., Lin, Z., Wang, Q., Zhu, Y., Xu, J., Chen, K.: Integrated silicon-based spectral reshaping intermediate structures for high performance solar thermophotovoltaics. Sol. Energy 249, 227–232 (2023)

    Article  CAS  Google Scholar 

  34. Van Ooij, W.J., Zhu, D.Q., Prasad, G., Jayaseelan, S., Fu, Y., Teredesai, N.: Silane based chromate replacements for corrosion control, paint adhesion, and rubber bonding. Surf. Eng. 16(5), 386–396 (2000)

    Article  Google Scholar 

  35. Amouzou, D., Fourdrinier, L., Maseri, F., Sporken, R.: Formation of Me–O–Si covalent bonds at the interface between polysilazane and stainless steel. Appl. Surf. Sci. 320, 519–523 (2014)

    Article  CAS  Google Scholar 

  36. Rouzmeh, S.S., Naderi, R., Mahdavian, M.: Steel surface treatment with three different acid solutions and its effect on the protective properties of the subsequent silane coating. Prog. Org. Coat. 112, 133–140 (2017)

    Article  CAS  Google Scholar 

  37. Muir, B.W., Thissen, H., Simon, G.P., Murphy, P.J., Griesser, H.J.: Factors affecting the adhesion of microwave plasma deposited siloxane films on polycarbonate. Thin Solid Films 500(1–2), 34–40 (2006)

    Article  CAS  Google Scholar 

  38. Hussain, B., Ebong, A., Ferguson, I.: Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol. Energy Mater. Sol. Cells 139, 95–100 (2015)

    Article  CAS  Google Scholar 

  39. Bertaux, E., Le Marec, E., Crespy, D., Rossi, R., Hegemann, D.: Effects of siloxane plasma coating on the frictional properties of polyester and polyamide fabrics. Surf. Coat. Technol. 204(1–2), 165–171 (2009)

    Article  CAS  Google Scholar 

  40. Boutamine, M., Bellel, A., Sahli, S., Segui, Y., Raynaud, P.: Hexamethyldisiloxane thin films as sensitive coating for quartz crystal microbalance based volatile organic compounds sensors. Thin Solid Films 552, 196–203 (2014)

    Article  CAS  Google Scholar 

  41. Mobarakeh, L.F., Jafari, R., Farzaneh, M.: The ice repellency of plasma polymerized hexamethyldisiloxane coating. Appl. Surf. Sci. 284, 459–463 (2013)

    Article  Google Scholar 

  42. Marchand, D.J., Dilworth, Z.R., Stauffer, R.J., Hsiao, E., Kim, J.H., Kang, J.G., Kim, S.H.: Atmospheric rf plasma deposition of superhydrophobic coatings using tetramethylsilane precursor. Surf. Coat. Technol. 234, 14–20 (2013)

    Article  CAS  Google Scholar 

  43. Ramamoorthy, A., Rahman, M., Mooney, D.A., MacElroy, J.D., Dowling, D.P.: Thermal stability studies of atmospheric plasma deposited siloxane films deposited on Vycor™ glass. Surf. Coat. Technol. 202(17), 4130–4136 (2008)

    Article  CAS  Google Scholar 

  44. Tanaka, T., Hanaoka, K., Yamaguchi, M., Shindo, T., Kunzelmann, K.H., Teranaka, T.: Silica film coating method for veneering resin composite. Dent. Mater. J. 30(2), 170–175 (2011)

    Article  CAS  Google Scholar 

  45. Duran, S.S.F., Zhang, D., Lim, W.Y.S., Cao, J., Liu, H., Zhu, Q., Tan, C.K.I., Xu, J., Loh, X.J., Suwardi, A.: Potential of recycled silicon and silicon-based thermoelectrics for power generation. Crystals 12(3), 307 (2022)

    Article  CAS  Google Scholar 

  46. Marceaux, S., Bressy, C., Perrin, F.X., Martin, C., Margaillan, A.: Development of polyorganosilazane–silicone marine coatings. Prog. Org. Coat. 77(11), 1919–1928 (2014)

    Article  CAS  Google Scholar 

  47. Morlier, A., Cros, S., Garandet, J.P., Alberola, N.: Structural properties of ultraviolet cured polysilazane gas barrier layers on polymer substrates. Thin Solid Films 550, 85–89 (2014)

    Article  CAS  Google Scholar 

  48. Bauer, F., Decker, U., Dierdorf, A., Ernst, H., Heller, R., Liebe, H., Mehnert, R.: Preparation of moisture curable polysilazane coatings: Part I. Elucidation of low temperature curing kinetics by FT-IR spectroscopy. Progr. Organ. Coat. 53(3), 183–190 (2005)

    Google Scholar 

  49. Müller, S., de Hazan, Y., Penner, D.: Effect of temperature, humidity and aminoalkoxysilane additive on the low temperature curing of polyorganosilazane coatings studied by IR spectroscopy, gravimetric and evolved gas analysis. Prog. Org. Coat. 97, 133–145 (2016)

    Article  Google Scholar 

  50. Ammar, S., Ramesh, K., Vengadaesvaran, B., Ramesh, S., Arof, A.K.: Amelioration of anticorrosion and hydrophobic properties of epoxy/PDMS composite coatings containing nano ZnO particles. Prog. Org. Coat. 92, 54–65 (2016)

    Article  CAS  Google Scholar 

  51. Kumar, S.A., Alagar, M., Mohan, V.: Studies on corrosion-resistant behavior of siliconized epoxy interpenetrating coatings over mild steel surface by electrochemical methods. J. Mater. Eng. Perform. 11, 123–129 (2002)

    Article  CAS  Google Scholar 

  52. Canosa, G., Alfieri, P.V., Giudice, C.A.: High-solids, one-coat paints based on aliphatic epoxy resin-siloxanes for steel protection. Prog. Org. Coat. 77(9), 1459–1464 (2014)

    Article  CAS  Google Scholar 

  53. Ribeiro, L.F.B., Flores, O., Furtat, P., Gervais, C., Kempe, R., Machado, R.A., Motz, G.: A novel PAN/silazane hybrid polymer for processing of carbon-based fibres with extraordinary oxidation resistance. J. Mater. Chem. A 5(2), 720–729 (2017)

    Article  CAS  Google Scholar 

  54. Lampert, F., Jensen, A.H., Din, R.U., Møller, P.: Hydrogen Silsesquioxane based silica glass coatings for the corrosion protection of austenitic stainless steel. Surf. Coat. Technol. 307, 879–885 (2016)

    Article  CAS  Google Scholar 

  55. Tiwari, A., Hihara, L.H.: High performance reaction-induced quasi-ceramic silicone conversion coating for corrosion protection of aluminium alloys. Prog. Org. Coat. 69(1), 16–25 (2010)

    Article  CAS  Google Scholar 

  56. Zhou, L., Lv, G.H., Ji, C., Yang, S.Z.: Application of plasma polymerized siloxane films for the corrosion protection of titanium alloy. Thin Solid Films 520(7), 2505–2509 (2012)

    Article  CAS  Google Scholar 

  57. Akuzov, D., Vladkova, T., Zamfirova, G., Gaydarov, V., Nascimento, M.V., Szeglat, N., Grunwald, I.: Polydimethyl siloxane coatings with superior antibiofouling efficiency in laboratory and marine conditions. Prog. Org. Coat. 103, 126–134 (2017)

    Article  CAS  Google Scholar 

  58. Arukalam, I.O., Oguzie, E.E., Li, Y.: Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel. J. Colloid Interface Sci. 484, 220–228 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It is my proud privilege and special appreciation towards my supervisor, Dr. Sudesh Kumar, professor of Chemistry, Banasthali Vidyapeeth, Department of Chemistry, Rajasthan, under his guidance for his keen enthusiastic interest and valuable guidance which made it possible to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Kumar .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

We have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sati, P., Kumari, A., Kumar, S. (2024). Silicon-Based Technologies for High-Temperature Coatings and Their Corrosion Behaviours. In: Pakseresht, A., Amirtharaj Mosas, K.K. (eds) Coatings for High-Temperature Environments. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45534-6_5

Download citation

Publish with us

Policies and ethics