Skip to main content

Exploring the Performance of Deep Learning in High-Energy Physics

  • Conference paper
  • First Online:
Information and Communication Technologies (TICEC 2023)

Abstract

This article presents a comprehensive investigation into the effectiveness of supervised deep learning techniques for classifying the outcome of high-energy particle collisions using CMS Open Data. The research primarily focuses on the conversion of particle and jet position and momentum information into images, followed by the application of convolutional neural networks (CNNs) to classify various particle processes. Two distinct scenarios are considered. The first scenario involves classifying images for processes that generate a known resonance with invariant masses at different energy ranges. The second scenario focuses on identifying signal and background processes with similar final states. Furthermore, alternative CNN architectures are evaluated based on their performance metrics within each scenario. The trained neural network models with the best performance metrics are subsequently employed for classifying real collision data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffiths, D.J.: Introduction to Elementary Particles; 2nd rev. version. Physics Textbook. Wiley, New York (2008)

    Google Scholar 

  2. Feickert, M., Nachman, B.: A Living Review of Machine Learning for Particle Physics (2021)

    Google Scholar 

  3. Madrazo, C.F., Heredia, I., Lloret, L., de Lucas, J.M.: Application of a convolutional neural network for image classification for the analysis of collisions in high energy physics. In: EPJ Web Conferences, vol. 214, p. 06017 (2019)

    Google Scholar 

  4. CERN Open Data Portal. https://opendata.cern.ch/

  5. Cottingham, W.N., Greenwood, D.A.: An Introduction to the Standard Model of Particle Physics, 2nd edn. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  6. Sirunyan, A.M., et al.: Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at \(\sqrt{s}\)=13 TeV. J. Instrum. 13(06), P06015–P06015 (2018)

    Google Scholar 

  7. Sirunyan, A.M., et al.: Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV. J. Instrum. 13(05), P05011–P05011 (2018)

    Article  Google Scholar 

  8. Sirunyan, A.M., et al.: Performance of missing transverse momentum reconstruction in proton-proton collisions at \(\sqrt{s}\)=13 TeV using the CMS detector. J. Instrum. 14(07), P07004–P07004 (2019)

    Article  Google Scholar 

  9. Chen, X., Gehrmann, T., Glover, N., Huss, A., Yang, T.-Z., Zhu, H.X.: Dilepton rapidity distribution in Drell-Yan production to third order in QCD. Phys. Rev. Lett. 128(5), 052001 (2022)

    Article  Google Scholar 

  10. Han, T., Li, S., Su, S., Su, W., Wu, Y.: BSM higgs production at a muon collider (2022)

    Google Scholar 

  11. Khachatryan, V., et al.: Measurement of prompt \(j/\psi \) pair production in pp collisions at \(\sqrt{s}\)= 7 TeV. J. High Energy Phys. 2014(9) (2014)

    Google Scholar 

  12. Larkoski, A.J.: Elementary Particle Physics: An Intuitive Introduction. Cambridge University Press, Cambridge (2019)

    Book  MATH  Google Scholar 

  13. Berger, M.S.: The ttbar threshold at a muon collider (1995)

    Google Scholar 

  14. Aggarwal, C.C.: Neural networks and deep learning: a textbook (2018)

    Google Scholar 

  15. CERN. CMS Open Data Workshop 2022 (2022). https://cms-opendata-workshop.github.io/2022-08-01-cms-open-data-workshop/

  16. CMS Collaboration: Simulated dataset ZToMuMu_M_50_120_NNPDF30_13TeV_powheg_herwigpp in MINIAODSIM format for 2015 collision data. CERN Open Data Portal (2021). https://doi.org/10.7483/OPENDATA.CMS.X6BR.VOSN

  17. CMS Collaboration: Simulated dataset WJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8 in MINIAODSIM format for 2015 collision data. CERN Open Data Portal (2021). https://doi.org/10.7483/OPENDATA.CMS.FLGU.07DD

  18. CMS Collaboration: Simulated dataset TT_TuneCUETP8M1_13TeV-powheg-pythia8 in MINIAODSIM format for 2015 collision data. CERN Open Data Portal (2021). https://doi.org/10.7483/OPENDATA.CMS.JJEM.1DKC

  19. CMS Collaboration: Simulated dataset JpsiToMuMu-JpsiPt8-TuneCUEP8M1-13TeV-pythia8 in MINIAODSIM format for 2015 collision data. CERN Open Data Portal (2021). https://doi.org/10.7483/OPENDATA.CMS.2TX8.NV9C

  20. CMS Collaboration: Simulated dataset VBF-HToMuMu-M125-13Te-powheg-pythia8 in MINIAODSIM format for 2015 collision data. CERN Open Data Portal (2021). https://doi.org/10.7483/OPENDATA.CMS.QIQ9.ZH9W

  21. CMS collaboration: DoubleMuon primary dataset /DoubleMuon/Run2015D-16Dec2015-v1/MINIAOD in MINIAOD format from Run of 2015 collision data. CERN Open Data Portal (2021). https://doi.org/10.7483/OPENDATA.CMS.H3TX.ZJZX

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition (2015)

    Google Scholar 

  23. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely Connected Convolutional Networks (2018)

    Google Scholar 

  24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. arXiv 1512.00567 (2015). https://doi.org/10.48550/arXiv.1409.4842

  25. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv 2: inverted residuals and linear bottlenecks (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Merizalde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Merizalde, D., Ochoa, J., Tintin, X., Carrera, E., Martinez, D., Mena, D. (2023). Exploring the Performance of Deep Learning in High-Energy Physics. In: Maldonado-Mahauad, J., Herrera-Tapia, J., Zambrano-Martínez, J.L., Berrezueta, S. (eds) Information and Communication Technologies. TICEC 2023. Communications in Computer and Information Science, vol 1885. Springer, Cham. https://doi.org/10.1007/978-3-031-45438-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45438-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45437-0

  • Online ISBN: 978-3-031-45438-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics