Skip to main content

The Arrow of Time

  • Chapter
  • First Online:
Physics and the Nature of Reality

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 215))

  • 209 Accesses

Abstract

Since Boltzmann’s works, there is the question of explaining the arrow of time in statistical physics: While many microscopic physical theories do not know a preferred direction of time, one experiences an arrow of time in the macroscopic world. Glass shatters when it falls on the ground whereas we never see the reverse process. The usual explanations for that are based on a very special initial condition, a state of very high order which under the dynamics evolves in a natural way into a state of higher disorder. Here one can see (order \(\rightarrow \) disorder) the asymmetry in the propagation in time. This explanation, however, shifts the problem to the question of where the initial state of high order came from. In the following we will discuss different possible explanations for the emergence of a macroscopic arrow of time, in particular we will discuss an idea going back to V. A. Antonov who found that the growth in disorder can be explained without assuming a special initial condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact there is an infinite number of such times s. This, however, is irrelevant for the argument.

  2. 2.

    Note that temperature is a form of kinetic energy, but not kinetic energy per se. A stone falling in a gravitational field in the absence of friction will increase the total kinetic energy of the system while the temperature of the stone remains unchanged. While temperature is proportional to the variance in the momentum-direction and thus directly related to disorder of the system and thus entropy, kinetic energy is not. That is why temperature should be used as a macro-variable, not kinetic energy.

References

  1. A. Aguirre, S.M. Carroll, C Johnson, Out of equilibrium: understanding cosmological evolution to lower-entropy states. J. Cosmol. Astropart. Phys. 2012(02), 024 (2012)

    Google Scholar 

  2. D. Albert. Time and Chance (Harvard University Press, 2000). https://doi.org/10.2307/j.ctvjsf57g.

  3. V. Antonov, Most probable phase distribution in spherical star systems and conditions for its existence, in Dynamics of Star Clusters, ed. by J. Goodman, P. Hut. Vol. 113. (1985), p. 525. Originally published: V.A. Antonov. In: Vast. Leningrad University 7(135) (1962)

    Google Scholar 

  4. L. Boltzmann, Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn. E. Zermelo. Annalen der Physik und Chemie 293(4), 773–784 (1896). https://doi.org/10.1002/andp.18962930414. English translation in: S.G. Brush, Kinetic Theory: Irreversible Processes (Elsevier, 2016)

  5. L. Boltzmann, Über die Beziehung eines allgemeinen mechanischen Satzes zum zweiten Hauptsatze der Wärmetheorie (1970), pp. 240–247. https://doi.org/10.1007/978-3-322-84986-1_5. English translation in: S.G. Brush, Kinetic Theory: Irreversible Processes (Elsevier, 2016)

  6. L. Boltzmann, Zu Hrn. Zermelo’s Abhandlung “Über die mechanische Erklärung irreversibler Vorgänge”. Annalen der Physik und Chemie 296(2), 392–398 (1897). https://doi.org/10.1002/andp.18972960216. English translation in: S.G. Brush, Kinetic Theory: Irreversible Processes (Elsevier, 2016)

  7. J. Bricmont, Science of chaos or chaos in science?. Ann. N. Y. Acad. Sci. 775(1), 131–175 (1995). https://doi.org/10.1111/j.1749-6632.1996.tb23135.x

  8. R. Brown, A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos. Mag. 4(21), 161–173 (1828). https://doi.org/10.1080/14786442808674769.

  9. S. Carroll, From Eternity to Here: The Quest for the Ultimate Theory of Time (Dutton, 2010)

    Google Scholar 

  10. S. Carroll, Why Boltzmann Brains Are Bad, in Current Controversies in Philosophy of Science, ed. by S. Dasgupta, B. Weslake, R. Dotan (Routledge, 2020), pp. 7–20

    Google Scholar 

  11. S. Carroll, J. Chen, Does inflation provide natural initial conditions for the universe?. Int. J. Mod. Phys. D 14(12), 2335–2339 (2005). https://doi.org/10.1142/s0218271805008054

  12. S. Carroll, J. Chen, Spontaneous inflation and the origin of the arrow of time (2004). arXiv.hep-th/0410270

  13. E.K. Chen, The past hypothesis and the nature of physical laws, in The Probability Map of the Universe: Essays on David Albert’s Time and Chance, ed. by B. Loewer, E. Winsberg, B. Weslake (Harvard University Press, Cambridge, Masschusetts, 2023), pp. 204–248

    Google Scholar 

  14. D. Dürr, S. Goldstein, N. Zanghí, Quantum Physics Without Quantum Philosophy (Springer, Berlin, Heidelberg, 2013). https://doi.org/10.1007/978-3-642-30690-7.

  15. D. Dürr, S. Teufel, Bohmian Mechanics (Springer, 2009)

    Google Scholar 

  16. A. Eddington, The end of the world: from the standpoint of mathematical physics. Nat. 127(3203), 447–453 (1931). https://doi.org/10.1038/127447a0.

  17. A. Einstein, The advent of the quantum theory. Sci. 113(2926), 82–84 (1951). https://doi.org/10.1126/science.113.2926.82.

  18. A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322(8), 549–560 (1905). https://doi.org/10.1002/andp.19053220806.

  19. S. Goldstein, R. Tumulka, N. Zanghí, Is the hypothesis about a low entropy initial state of the Universe necessary for explaining the arrow of time?. Phys. Rev. D 94(2), 023520 (2016). https://doi.org/10.1103/PhysRevD.94.023520., https://link.aps.org/doi/101103/PhysRevD.94.023520

  20. L.G. Gouy, Note sur le mouvement brownien. Journal de Physique Théorique et Appliquée 7(1), 561–564. https://doi.org/10.1051/jphystap:018880070056101.

  21. O. Lanford, Time evolution of large classical systems, in Dynamical Systems, Theory and Applications: Battelle Seattle 1974 Rencontres (2005), pp. 1–111

    Google Scholar 

  22. D. Lazarovici, P. Reichert, Arrow(s) of time without a past hypothesis, in Statistical Mechanics and Scientific Explanation (World Scientific, 2020), pp. 343–386. https://doi.org/10.1142/9789811211720_0010

  23. J. Loschmidt, Über den Zustand des Wärmegleichgewichtes eines Systems von Körpern mit Rücksicht auf die Schwerkraft: I - IV. (aus der KK Hof-und Staatsdruckerei, 1876)

    Google Scholar 

  24. T.L. Carus, De rerum natura. Vol. Book II. Ca. 50 BC. Chap. 2. English translation: William Ellery Leonard et al. On the Nature of Things. (Courier Corporation, 2012)

    Google Scholar 

  25. D. Lynden-Bell, Negative specific heat in astronomy, physics and chemistry. Phys. A: Stat. Mech. Its Appl. 263(1–4), 293–304 (1999)

    Google Scholar 

  26. E. Mach, Die Principien der Wärmelehre. Historisch-kritisch entwickelt. Leipzig: Barth, 1896. VIII, 472. English translation: B. McGuinness (ed.), Principles of the Theory of Heat: Historically and critically elucidated. (Springer, 2012). https://doi.org/10.1007/978-94-009-4622-4.

  27. J.C. Maxwell, Matter and Motion (Cambridge University Press, 2010). https://doi.org/10.1017/cbo9780511709326

  28. T. Padmanabhan, Antonov instability and gravothermal catastrophe-revisited. Astrophys. J. Suppl. Ser. 71, 651–664 (1989)

    Article  ADS  Google Scholar 

  29. J. Perrin, Mouvement Brownien et molécules. J. Phys. Theor. Appl. 9(1), 5–39 (1910)

    Google Scholar 

  30. P. Reichert, Can a parabolic evolution of the entropy of the universe provide the foundation for the second law of thermodynamics?. MA thesis, 2012. http://www.mathematik.uni-muenchen.de/~bohmmech/theses/Reichert_Paula_MA_v2.pdf

  31. E. Zermelo, Über einen Satz der Dynamik und die mechanische Wärmetheorie. In: Annalen der Physik und Chemie 293(3), 485–494 (1896). https://doi.org/10.1002/andp.18962930314.

Download references

Acknowledgements

The authors are most grateful to Detlef Dürr for everything he did for us, and in particular for starting the collaboration on the topic and for all the inspiring meetings we had over the years.

We also wish to thank Julian Barbour, Tim Koslowski, Dustin Lazarovici, Tim Maudlin and Paula Reichert for helpful discussions on the topic.

The authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project-number 417613818 (“A microscopic model for explaining the arrow of time”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pickl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pickl, P., Schaal, A. (2024). The Arrow of Time. In: Bassi, A., Goldstein, S., Tumulka, R., Zanghì, N. (eds) Physics and the Nature of Reality. Fundamental Theories of Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-031-45434-9_19

Download citation

Publish with us

Policies and ethics