Skip to main content

Carbon-Based Pseudocapacitive Materials for Next Generation Batteries

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 216 Accesses

Abstract

Sodium and potassium-ion batteries have been hampered by their low rates and capacities, making them less desirable as electrical energy storage devices at low prices. Lithium-ion batteries (LIBs) are the preferred electrochemical energy storage technology for portable devices, electric vehicles, and grid storage. Despite this, LIBs are not being developed further due to their lack of fast charging technology, low energy density, and safety concerns. Utilizing carbon substrates as composite electrodes is one of the most widely used strategies for improving their electrochemical performance. Metal oxides and metal sulfide materials also possess a low working potential and the highest practical reversible capacity compared with commercialized graphite. Thus, combining a carbon-based material with a metal oxide/sulfide-based material will result in excellent electrical conductivity and reactivity, high theoretical capacity, flexibility, and remarkable tensile strength. In this chapter, carbon materials with metal oxides/sulfides are discussed in detail based on their structure–property interactions and the different electrochemical mechanisms driving their behavior to discuss the possibilities and challenges of post-battery technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Jeevanantham, Y. Song, H. Choe, M.K. Shobana, Structural and optical characteristics of cobalt ferrite nanoparticles. Mater. Lett.: X 12, 100105 (2021)

    CAS  Google Scholar 

  2. B. Jeevanantham, M.K. Shobana, T. Pazhanivel, H. Choe, Pseudocapacitive behaviors of strontium-doped cobalt ferrite nanoparticles for supercapacitor applications. J. Alloy. Compd. 960, 170651 (2023)

    Article  CAS  Google Scholar 

  3. B. Jeevanantham, P. Sarathkumar, S. Kavita, M.K. Shobana, Magnesium doped LiNixMnyCozO2 cathode-structural properties. Appl. Surf. Sci. Adv. 12, 100350 (2022)

    Article  Google Scholar 

  4. Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu, M. Xia, R. Zheng, M. Shui, J. Shu, Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65–90 (2020)

    Article  Google Scholar 

  5. L. Li, D. Zhang, J. Deng, Y. Gou, J. Fang, H. Cui, Y. Zhao, M. Cao, Carbon-based materials for fast charging lithium-ion batteries. Carbon 183, 721–734 (2021)

    Article  CAS  Google Scholar 

  6. R.N.A.R. Seman, M.A. Azam, A.A. Mohamad, Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renew. Sustain. Energy Rev. 75, 644–659 (2017)

    Article  CAS  Google Scholar 

  7. H. Zhang, G. Cao, Y. Yang, Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2(9), 932–943 (2009)

    Article  CAS  Google Scholar 

  8. V.A. Agubra, L. Zuniga, D. Flores, J. Villareal, M. Alcoutlabi, Composite nanofibers as advanced materials for Li-ion, Li-O2 and Li-S batteries. Electrochim. Acta 192, 529–550 (2016)

    Article  CAS  Google Scholar 

  9. S. Iqbal, H. Khatoon, A.H. Pandit, S. Ahmad, Recent development of carbon based materials for energy storage devices. Mater. Sci. Energy Technol. 2(3), 417–428 (2019)

    Google Scholar 

  10. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1(5), 403–408 (2009)

    Article  CAS  Google Scholar 

  11. X. Lu, X. Jin, J. Sun, Advances of graphene application in electrode materials for lithium ion batteries. Sci. China Technol. Sci. 58, 1829–1840 (2015)

    Article  CAS  Google Scholar 

  12. H. Zhang, Y. Yang, D. Ren, L. Wang, X. He, Graphite as anode materials: fundamental mechanism, recent progress and advances. Energy Storage Mater. 36, 147–170 (2021)

    Article  Google Scholar 

  13. B.M. Khan, W.C. Oh, P. Nuengmatch, K. Ullah, Role of graphene-based nanocomposites as anode material for Lithium-ion batteries. Mater. Sci. Eng., B 287, 116141 (2023)

    Article  Google Scholar 

  14. T. Hajilounezhad, R. Bao, K. Palaniappan, F. Bunyak, P. Calyam, & M.R. Maschmann, Predicting carbon nanotube forest attributes and mechanical properties using simulated images and deep learning. npj Comput. Mater. 7(1), 134 (2021)

    Google Scholar 

  15. H.Y. Cheng, Y.A. Zhu, Z.J. Sui, X.G. Zhou, D. Chen, Modeling of fishbone-type carbon nanofibers with cone-helix structures. Carbon 50(12), 4359–4372 (2012)

    Article  CAS  Google Scholar 

  16. L. Zhang, H. Wang, X. Zhang, Y. Tang, A review of emerging dual-ion batteries: fundamentals and recent advances. Adv. Func. Mater. 31(20), 2010958 (2021)

    Article  CAS  Google Scholar 

  17. H.B. Wu, J.S. Chen, H.H. Hng, X.W.D. Lou, Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8), 2526–2542 (2012)

    Article  CAS  Google Scholar 

  18. M.C. Yang, Y.Y. Lee, B. Xu, K. Powers, Y.S. Meng, TiO2 flakes as anode materials for Li-ion-batteries. J. Power Sources 207, 166–172 (2012)

    Article  CAS  Google Scholar 

  19. F.M. Courtel, H. Duncan, Y. Abu-Lebdeh, I.J. Davidson, High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A= Co, Ni, and Zn). J. Mater. Chem. 21(27), 10206–10218 (2011)

    Article  CAS  Google Scholar 

  20. Y. Jiang, D. Zhang, Y. Li, T. Yuan, N. Bahlawane, C. Liang, W. Sun, Y. Lu, M. Yan, Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy 4, 23–30 (2014)

    Article  CAS  Google Scholar 

  21. P.U. Nzereogu, A.D. Omah, F.I. Ezema, E.I. Iwuoha, A.C. Nwanya, Anode materials for lithium-ion batteries: a review. Appl. Surf. Sci. Adv. 9, 100233 (2022)

    Article  Google Scholar 

  22. B. Jeevanantham, M.K. Shobana, Enhanced cathode materials for advanced lithium-ion batteries using nickel-rich and lithium/manganese-rich LiNixMnyCozO2. J. Energy Storage 54, 105353 (2022)

    Article  Google Scholar 

  23. Y. Xiao, S.H. Lee, Y.K. Sun, The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7(3), 1601329 (2017)

    Article  Google Scholar 

  24. T.P. Nguyen, I.T. Kim, Boron oxide enhancing stability of MoS2 anode materials for lithium-ion batteries. Materials 15(6), 2034 (2022)

    Article  CAS  Google Scholar 

  25. Y. Zhang, J. Li, H. Li, H. Shi, Z. Gong, T. Lu, L. Pan, Facile self-assembly of carbon-free vanadium sulfide nanosheet for stable and high-rate lithium-ion storage. J. Coll. Interface Sci. 607, 145–152 (2022)

    Article  CAS  Google Scholar 

  26. X. Xu, W. Liu, Y. Kim, J. Cho, Nanostructured transition metal sulfides for lithium ion batteries: progress and challenges. Nano Today 9(5), 604–630 (2014)

    Article  CAS  Google Scholar 

  27. J. Ren, J. Yang, A. Abouimrane, D. Wang, K. Amine, SnO2 nanocrystals deposited on multiwalled carbon nanotubes with superior stability as anode material for Li-ion batteries. J. Power Sourc. 196(20), 8701–8705 (2011)

    Article  CAS  Google Scholar 

  28. Q. Ban, Y. Liu, P. Liu, Y. Li, Y. Qin, Y. Zheng, Hierarchically nanostructured carbon nanotube/polyimide/mesoporous Fe2O3 nanocomposite for organic-inorganic lithium-ion battery anode. Microporous Mesoporous Mater. 335, 111803 (2022)

    Article  CAS  Google Scholar 

  29. Y. Yuan, Y. Shao, X. Zhou, An investigation of Cu–ZrO2–TiO2/CNTs anode material for lithium-ion batteries. Int. J. Energy Res. 46(8), 11092–11108 (2022)

    Article  CAS  Google Scholar 

  30. J. Zhang, A. Tahmasebi, J.E. Omoriyekomwan, J. Yu, Microwave-assisted synthesis of biochar-carbon-nanotube-NiO composite as high-performance anode materials for lithium-ion batteries. Fuel Process. Technol. 213, 106714 (2021)

    Article  CAS  Google Scholar 

  31. C. Xu, Y. Jing, J. He, K. Zhou, Y. Chen, Q. Li, J. Lin, W. Zhang, Self-assembled interwoven CoS2/CNTs/graphene architecture as anode for high-performance lithium ion batteries. J. Alloy. Compd. 708, 1178–1183 (2017)

    Article  CAS  Google Scholar 

  32. Y. Cheng, H. Xie, L. Zhou, B. Shi, L. Guo, J. Huang, In-situ liquid-phase transformation of SnS2/CNTs composite from SnO2/CNTs for high performance lithium-ion battery anode. Appl. Surf. Sci. 566, 150645 (2021)

    Article  CAS  Google Scholar 

  33. Y. Shi, Y. Wang, J.I. Wong, A.Y.S. Tan, C.L. Hsu, L.J. Li, Y.C. Lu, H.Y. Yang, Self-assembly of hierarchical MoSx/CNT nanocomposites (2< x< 3): towards high performance anode materials for lithium ion batteries. Sci. Rep. 3(1), 1–8 (2013)

    Article  Google Scholar 

  34. Z. Shen, Y. Hu, Y. Chen, R. Chen, X. He, X. Zhang, H. Shao, Y. Zhang, Controllable synthesis of carbon-coated Sn SnO2 carbon-nanofiber membrane as advanced binder-free anode for lithium-ion batteries. Electrochim. Acta 188, 661–670 (2016)

    Article  CAS  Google Scholar 

  35. H. Chen, S. Zhang, S. Wu, K. Wang, C. Chen, Y. Chen, W. Chu, Z. Chen, H. Li, H. Liu, Design and synthesis of cellulose nanofiber-derived CoO/Co/C two-dimensional nanosheet toward enhanced and stable lithium storage. J. Colloid Interface Sci. 625, 915–924 (2022)

    Article  CAS  Google Scholar 

  36. J. Wang, J. Yao, W. Li, W. Zhu, J. Yang, J. Zhao, L. Gao, Lithium molybdate composited with carbon nanofibers as a high-capacity and stable anode material for lithium-ion batteries. Energy Mater 2, 200026 (2022)

    Article  CAS  Google Scholar 

  37. Y. Guo, D. Zhang, Z. Bai, Y. Yang, Y. Wang, J. Cheng, P.K. Chu, Y. Luo, MXene nanofibers confining MnOx nanoparticles: a flexible anode for high-speed lithium ion storage networks. Dalton Trans. 51(4), 1423–1433 (2022)

    Article  CAS  Google Scholar 

  38. J. Yang, S. Du, L. Ao, J. Zhang, C. Jin, M. Han, K. Jiang, L. Shang, Y. Li, J. Zhang, L. Zhu, Embedded double one-dimensional composites of WO3@ N-doped carbon nanofibers for superior and stabilized lithium storage. ChemElectroChem. 9(2), e202101477 (2022)

    Article  CAS  Google Scholar 

  39. H. Chen, J. He, G. Ke, L. Sun, J. Chen, Y. Li, X. Ren, L. Deng, P. Zhang, MoS2 nanoflowers encapsulated into carbon nanofibers containing amorphous SnO2 as an anode for lithium-ion batteries. Nanoscale 11(35), 16253–16261 (2019)

    Article  CAS  Google Scholar 

  40. L. Zhang, W. Fan, T. Liu, Flexible hierarchical membranes of WS2 nanosheets grown on graphene-wrapped electrospun carbon nanofibers as advanced anodes for highly reversible lithium storage. Nanoscale 8(36), 16387–16394 (2016)

    Article  CAS  Google Scholar 

  41. P. Lian, J. Wang, D. Cai, L. Ding, Q. Jia, H. Wang, Porous SnO2@ C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochim. Acta 116, 103–110 (2014)

    Article  CAS  Google Scholar 

  42. Y. Liu, X. Liu, X. Zhang, X. Miao, Y. Wang, P. Wang, A novel carbon microspheres@ SnO2/reduced graphene composite as anode for lithium-ion batteries with superior cycle stability. Ceram. Int. 48(13), 18625–18634 (2022)

    Article  CAS  Google Scholar 

  43. J. Xu, D. Xu, J. Wu, J. Wu, J. Zhou, T. Zhou, X. Wang, J.P. Cheng, Ultra-small Fe2O3 nanoparticles anchored on ultrasonically exfoliated multilayer graphene for LIB anode application. Ceram. Int. 48(21), 32524–32531 (2022)

    Article  CAS  Google Scholar 

  44. B. Wei, S. Yan, D. Jia, C. Feng, J. Yin, Z. Wang, Preparation of SnO2@ TiO2/Graphene by micro-arc oxidation as an anode material for lithium ion batteries. Inorg. Chem. Commun. 145, 110048 (2022)

    Article  CAS  Google Scholar 

  45. L. Yang, Z. Niu, C. Wang, Z. Liu, X. Feng, Preparation and electrochemical performance of biomass-derived porous carbon/MoO2@ TiO2 composite as anode materials for lithium-ion batteries. Solid State Ionics 389, 116110 (2023)

    Article  CAS  Google Scholar 

  46. Y. Rao, J. Wang, P. Liang, H. Zheng, M. Wu, J. Chen, F. Shi, K. Yan, J. Liu, K. Bian, C. Zhang, Heterostructured WS2/MoS2@ carbon hollow microspheres anchored on graphene for high-performance Li/Na storage. Chem. Eng. J. 443, 136080 (2022)

    Article  CAS  Google Scholar 

  47. Y. Xu, R. Yi, B. Yuan, X. Wu, M. Dunwell, L. Fei, S. Deng, P. Andersen, D. Wang, H. Luo, High capacity MoO2/graphite oxide composite anode for lithium-ion batteries. J. Phys. Chem. Lett. 3(3), 309–314 (2012)

    Article  CAS  Google Scholar 

  48. Y. Wang, L. Yang, R. Hu, L. Ouyang, M. Zhu, Facile synthesis of Fe2O3-graphite composite with stable electrochemical performance as anode material for lithium ion batteries. Electrochim. Acta 125, 421–426 (2014)

    Article  CAS  Google Scholar 

  49. B. Liu, F. Li, H. Li, S. Zhang, J. Liu, X. He, Z. Sun, Z. Yu, Y. Zhang, X. Huang, F. Guo, Monodisperse MoS2/graphite composite anode materials for advanced lithium ion batteries. Molecules 28(6), 2775 (2023)

    Article  CAS  Google Scholar 

  50. Q. Liang, L. Zhang, M. Zhang, Q. Pan, L. Wang, G. Yang, F. Zheng, Y. Huang, H. Wang, Q. Li, Heterostructured SnS-ZnS@ C nanoparticles embedded in expanded graphite as advanced anode materials for lithium ion batteries. Chem. Phys. Lett. 775, 138662 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Shobana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeevanantham, B., Shobana, M.K. (2024). Carbon-Based Pseudocapacitive Materials for Next Generation Batteries. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_16

Download citation

Publish with us

Policies and ethics