Skip to main content

MXenes for Pseudocapacitors

  • Chapter
  • First Online:
Pseudocapacitors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 203 Accesses

Abstract

The emergence of transition metal carbides/nitrides (MXene) in 2011 has sparked significant interest in the development of 2D materials for energy storage applications. MXene's layered structure offers several advantages, such as increased active sites, rapid ionic diffusion, hydrophilicity, and a larger surface area. Moreover, the surface chemistry of MXene exhibits high-rate pseudocapacitance characteristics. This chapter aims to discuss various methods to alter the interlayer distance of MXenes and also discuss how these interlayers affect the electrochemical properties of the materials. Furthermore, the chapter explores various composites and hybrid structures involving MXene for pseudocapacitors. The storage capacity and kinetics of MXene are described in the context of pseudocapacitors. Finally, the challenges and prospects of MXene for supercapacitor applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Li, J. Lu, Z. Chen, K. Amine, 30 Years of Lithium-Ion Batteries. Adv. Mater. 30, 1800561 (2018). https://doi.org/10.1002/ADMA.201800561

    Article  Google Scholar 

  2. M. Fichtner, K. Edström, E. Ayerbe, M. Berecibar, A. Bhowmik, I.E. Castelli, S. Clark, R. Dominko, M. Erakca, A.A. Franco, A. Grimaud, B. Horstmann, A. Latz, H. Lorrmann, M. Meeus, R. Narayan, F. Pammer, J. Ruhland, H. Stein, T. Vegge, M. Weil, Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective. Adv. Energy Mater. 12, 2102904 (2022). https://doi.org/10.1002/AENM.202102904

    Article  CAS  Google Scholar 

  3. P. S. Walke, S. P. Gupta, H. Nishad, B. R. Sathe, D. J. Late, Engineering two-dimensional materials for high-performance supercapacitor devices. Fundam. Supercapacitor Appl. 2D Mater. 359–387. (2021). https://doi.org/10.1016/B978-0-12-821993-5.00001-7

  4. J. Xie, Lu YC (2020) A retrospective on lithium-ion batteries. Nat. Commun. 111(11), 1–4 (2020). https://doi.org/10.1038/s41467-020-16259-9

    Article  CAS  Google Scholar 

  5. S.P. Gupta, P.S. Walke, Scalable multifunctional ultralight mesoporous micro yarn carbon for excellent durable supercapacitor and tremendous oils sorbent. Chem. Eng. J. 456, 141011 (2023). https://doi.org/10.1016/J.CEJ.2022.141011

    Article  CAS  Google Scholar 

  6. H.S. Nishad, S.P. Gupta, N.S. Khan, A.V. Biradar, J. Lee, S.M. Mane, P.S. Walke, Structural Transformation of Hydrated WO3 into SnWO4 via Sn incorporation enables a superior pseudocapacitor and aqueous Zinc-Ion Battery. Energy Fuels (2023). https://doi.org/10.1021/ACS.ENERGYFUELS.3C00556/SUPPL_FILE/EF3C00556_SI_001.PDF

    Article  Google Scholar 

  7. E.P. Asiwal, H.H. Nishad, C.S. Gujja, P.S. Walke, S.D. Pawar, Fabrication of anhydride core-based conductive layered Ni-MOF nanoflakes for high performance supercapacitors. New J. Chem. (2023). https://doi.org/10.1039/D2NJ06120A

    Article  Google Scholar 

  8. H.S. Nishad, S.P. Gupta, V. Kotha, B.M. Patil, S.D. Chakane, M.G. Bute, S.W. Gosavi, D.J. Late, P.S. Walke, Enhanced van-der Waals separation in hydrated tungsten oxide nanoplates enables superior pseudocapacitive charge storage. J. Alloys Compd. 914, 165227 (2022). https://doi.org/10.1016/J.JALLCOM.2022.165227

    Article  CAS  Google Scholar 

  9. S.P. Gupta, H.H. Nishad, V.B. Patil, S.D. Chakane, M.A. More, D.J. Late, P.S. Walke, Morphology and crystal structure dependent pseudocapacitor performance of hydrated WO3 nanostructures. Mater. Adv. 1, 2492–2500 (2020). https://doi.org/10.1039/d0ma00518e

    Article  CAS  Google Scholar 

  10. Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, Jiang S (2020) Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 561(56), 173–200 (2020). https://doi.org/10.1007/S10853-020-05157-6

    Article  Google Scholar 

  11. H.T.H. Shi, S. Jang, A. Reza-Ugalde, H.E. Naguib, Hierarchically structured nitrogen-doped multilayer reduced graphene oxide for flexible intercalated supercapacitor electrodes. ACS Appl. Energy. Mater. 3, 987–997 (2020). https://doi.org/10.1021/ACSAEM.9B02038/ASSET/IMAGES/MEDIUM/AE9B02038_0010.GIF

    Article  CAS  Google Scholar 

  12. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-Dimensional nanocrystals: Two-Dimensional nanocrystals produced by exfoliation of Ti3AlC2 (Adv. Mater. 37/2011). Adv. Mater. 23, 4207–4207 (2011). https://doi.org/10.1002/ADMA.201190147

    Article  Google Scholar 

  13. N.K. Chaudhari, H. Jin, B. Kim, D. San Baek, S.H. Joo, K. Lee, MXene: an emerging two-dimensional material for future energy conversion and storage applications. J Mater Chem A 5, 24564–24579 (2017). https://doi.org/10.1039/C7TA09094C

    Article  CAS  Google Scholar 

  14. J. Fu, J. Yun, S. Wu, L. Li, L. Yu, K.H. Kim, Architecturally robust Graphene-Encapsulated MXene Ti2CTx@Polyaniline composite for High-Performance Pouch-Type asymmetric supercapacitor. ACS Appl. Mater. Interfaces 10, 34212–34221 (2018). https://doi.org/10.1021/ACSAMI.8B10195/SUPPL_FILE/AM8B10195_SI_001.PDF

    Article  CAS  Google Scholar 

  15. K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi, Seh ZW (2022) fundamentals of MXene synthesis. Nat Synth 18(1), 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6

    Article  Google Scholar 

  16. M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang, Z. Li, Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 49, 6666–6693 (2020). https://doi.org/10.1039/d0cs00175a

    Article  CAS  Google Scholar 

  17. M. Boota, C. Chen, K.L. Van Aken, J. Jiang, Y. Gogotsi, Organic-inorganic all-pseudocapacitive asymmetric energy storage devices. Nano Energy 65, 104022 (2019). https://doi.org/10.1016/J.NANOEN.2019.104022

    Article  CAS  Google Scholar 

  18. H. Tang, Q. Hu, M. Zheng, Y. Chi, X. Qin, H. Pang, Q. Xu, MXene–2D layered electrode materials for energy storage. Prog Nat Sci Mater Int 28, 133–147 (2018). https://doi.org/10.1016/J.PNSC.2018.03.003

    Article  CAS  Google Scholar 

  19. Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti 3C 2 and Ti 3C 2X 2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012). https://doi.org/10.1021/JA308463R/SUPPL_FILE/JA308463R_SI_001.PDF

    Article  CAS  Google Scholar 

  20. S.A. Thomas, A. Patra, B.M. Al-Shehri, M. Selvaraj, A. Aravind, C.S. Rout, MXene based hybrid materials for supercapacitors: Recent developments and future perspectives. J Energy Storage 55, 105765 (2022). https://doi.org/10.1016/J.EST.2022.105765

    Article  Google Scholar 

  21. S. Yadav, A. Sharma, Importance and challenges of hydrothermal technique for synthesis of transition metal oxides and composites as supercapacitor electrode materials. J Energy Storage 44, 103295 (2021). https://doi.org/10.1016/J.EST.2021.103295

    Article  Google Scholar 

  22. M.R. Lukatskaya, S.M. Bak, X. Yu, X.Q. Yang, M.W. Barsoum, Y. Gogotsi, Probing the mechanism of high capacitance in 2D Titanium Carbide Using in Situ X-Ray absorption spectroscopy. Adv. Energy Mater. 5, 2–5 (2015). https://doi.org/10.1002/aenm.201500589

    Article  CAS  Google Scholar 

  23. Z. Wang, Z. Xu, H. Huang, X. Chu, Y. Xie, D. Xiong, C. Yan, H. Zhao, H. Zhang, W. Yang, Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors. ACS Nano 14, 4916–4924 (2020). https://doi.org/10.1021/ACSNANO.0C01056/SUPPL_FILE/NN0C01056_SI_001.PDF

    Article  CAS  Google Scholar 

  24. M. Boota, Y. Gogotsi, MXene—Conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 9, 1802917 (2019). https://doi.org/10.1002/AENM.201802917

    Article  Google Scholar 

  25. J. Wu, Q. Li, C.E. Shuck, K. Maleski, H.N. Alshareef, J. Zhou, Y. Gogotsi, L. Huang, An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res. 15, 535–541 (2022). https://doi.org/10.1007/S12274-021-3513-X/METRICS

    Article  Google Scholar 

  26. P. Zhang, J. Li, D. Yang, A. Soomro, B. Xu, P. Zhang, J. Li, D. Yang, R.A. Soomro, B. Xu, Flexible Carbon Dots-Intercalated MXene film electrode with outstanding volumetric performance for supercapacitors. Adv. Funct. Mater. 33, 2209918 (2023). https://doi.org/10.1002/ADFM.202209918

    Article  CAS  Google Scholar 

  27. J. Xu, T. Peng, Q. Zhang, H. Zheng, H. Yu, S. Shi, Intercalation effects on the electrochemical properties of Ti3C2TxMXene nanosheets for High-Performance supercapacitors. ACS Appl Nano Mater 5, 8794–8803 (2022). https://doi.org/10.1021/ACSANM.2C00632/SUPPL_FILE/AN2C00632_SI_001.PDF

    Article  CAS  Google Scholar 

  28. S. Zheng, C. Zhang, F. Zhou, Y. Dong, X. Shi, V. Nicolosi, Z.S. Wu, X. Bao, Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J. Mater. Chem. A. 7, 9478–9485 (2019). https://doi.org/10.1039/C9TA02190F

    Article  CAS  Google Scholar 

  29. M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, MXene as a Charge Storage Host. Acc. Chem. Res. 51, 591–599 (2018). https://doi.org/10.1021/ACS.ACCOUNTS.7B00481/SUPPL_FILE/AR7B00481_SI_001.PDF

    Article  CAS  Google Scholar 

  30. J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z. Liu, M.H. Rummeli, Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F

    Article  CAS  Google Scholar 

  31. R. Fang, C. Lu, A. Chen, K. Wang, H. Huang, Y. Gan, C. Liang, J. Zhang, X. Tao, Y. Xia, W. Zhang, 2 D MXene-based energy storage materials: interfacial structure design and functionalization. Chemsuschem 13, 1409–1419 (2020). https://doi.org/10.1002/CSSC.201902537

    Article  CAS  Google Scholar 

  32. K. Nasrin, V. Sudharshan, K. Subramani, M. Sathish, Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Next-Generation Supercapacitors: A Review. Adv. Funct. Mater. 32, 1–42 (2022). https://doi.org/10.1002/adfm.202110267

    Article  CAS  Google Scholar 

  33. M.C. Liu, B.M. Zhang, Y.S. Zhang, B.N. Gu, C.Y. Tian, D.T. Zhang, Y.Q. Wang, B. Zhao, Y.Y. Wang, M.J. Liu, Y.J. Yu, K. Zhao, K.L. Bin, Y.L. Chueh, Regulating interlayer spacing with pillar and strain structures in Ti3C2 MXene layers by molecular welding for superior alkali metal ion storage. Mater Today Energy 22, 100832 (2021). https://doi.org/10.1016/j.mtener.2021.100832

    Article  CAS  Google Scholar 

  34. W. Cheng, J. Fu, H. Hu, D. Ho, Interlayer structure engineering of MXene-Based Capacitor-Type electrode for Hybrid Micro-Supercapacitor toward Battery-Level energy density. Adv. Sci. 8, 1–13 (2021). https://doi.org/10.1002/advs.202100775

    Article  CAS  Google Scholar 

  35. Y. Tang, J. Zhu, W. Wu, C. Yang, W. Lv, F. Wang, Synthesis of Nitrogen-Doped Two-Dimensional Ti 3 C 2 with enhanced electrochemical performance. J. Electrochem. Soc. 164, A923–A929 (2017). https://doi.org/10.1149/2.0041706jes

    Article  CAS  Google Scholar 

  36. N. Sun, Z. Guan, Q. Zhu, B. Anasori, Y. Gogotsi, B. Xu, Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett 12, 1–11 (2020). https://doi.org/10.1007/s40820-020-00426-0

    Article  CAS  Google Scholar 

  37. Y. Li, Y. Deng, J. Zhang, Y. Shen, X. Yang, W. Zhang, Synthesis of restacking-free wrinkled Ti3C2Tx monolayers by sulfonic acid group grafting and N-doped carbon decoration for enhanced supercapacitor performance. J. Alloys Compd. 842, 155985 (2020). https://doi.org/10.1016/j.jallcom.2020.155985

    Article  CAS  Google Scholar 

  38. X. Zhang, J. Miao, P. Zhang, Q. Zhu, M. Jiang, B. Xu, 3D crumbled MXene for high-performance supercapacitors. Chinese Chem Lett 31, 2305–2308 (2020). https://doi.org/10.1016/j.cclet.2020.03.040

    Article  CAS  Google Scholar 

  39. Z.M. Qiu, Y. Bai, Y.D. Gao, C.L. Liu, Y. Ru, Y.C. Pi, Y.Z. Zhang, Y.S. Luo, Pang H (2021) MXenes nanocomposites for energy storage and conversion. Rare Met. 414(41), 1101–1128 (2021). https://doi.org/10.1007/S12598-021-01876-0

    Article  Google Scholar 

  40. X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons 5, 235–258 (2020). https://doi.org/10.1039/C9NH00571D

    Article  CAS  Google Scholar 

  41. T. Wang, T. Wang, C. Weng, L. Liu, J. Zhao, Z. Zhang, Engineering electrochemical actuators with large bending strain based on 3D-structure titanium carbide MXene composites. Nano Res. 14, 2277–2284 (2021). https://doi.org/10.1007/S12274-020-3222-X/METRICS

    Article  CAS  Google Scholar 

  42. C. Peng, Z. Kuai, T. Zeng, Y. Yu, Z. Li, J. Zuo, S. Chen, S. Pan, L. Li, WO3 Nanorods/MXene composite as high performance electrode for supercapacitors. J. Alloys Compd. 810, 151928 (2019). https://doi.org/10.1016/J.JALLCOM.2019.151928

    Article  CAS  Google Scholar 

  43. Y. Wei, W. Luo, Z. Zhuang, B. Dai, J. Ding, T. Li, M. Ma, X. Yin, Fabrication of ternary MXene / MnO 2 / polyaniline nanostructure with good electrochemical performances. Adv. Compos. Hybrid. Mater. 1082–1091 (2021). https://doi.org/10.1007/s42114-021-00323-z

  44. Z. Guo, Y. Li, Z. Lu, Materials High-performance MnO2 @ MXene/carbon nanotube fiber electrodes with internal and external construction for supercapacitors. J. Mater. Sci. 57, 3613–3628 (2022). https://doi.org/10.1007/s10853-021-06840-y

    Article  CAS  Google Scholar 

  45. Z. Zheng, W. Wu, T. Yang, E. Wang, Z. Du, W. Zheng, J. Halim, A. El Ghazaly, A.S. Etman, E.N. Tseng, P.O.Å. Persson, J. Rosen, M.W. Barsoum, Flexible Free-Standing MoO3/Ti3C2Tz MXene composite films with high gravimetric and volumetric capacities. Adv. Sci. 8, 1–9 (2021). https://doi.org/10.1002/advs.202003656

    Article  CAS  Google Scholar 

  46. W. Xie, Y. Wang, J. Zhou, M. Zhang, J. Yu, C. Zhu, J. Xu, MOF-derived CoFe2O4 nanorods anchored in MXene nanosheets for all pseudocapacitive flexible supercapacitors with superior energy storage. Appl. Surf. Sci. 534, 147584 (2020). https://doi.org/10.1016/J.APSUSC.2020.147584

    Article  CAS  Google Scholar 

  47. H. Zhou, F. Wu, L. Fang, J. Hu, H. Luo, T. Guan, B.S. Hu, M. Zhou, Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor. Int. J. Hydrogen Energy 45, 13080–13089 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.001

    Article  CAS  Google Scholar 

  48. T. Xu, Y. Wang, K. Liu, Q. Zhao, Q. Liang, M. Zhang, C. Si, Ultralight MXene/carbon nanotube composite aerogel for high—performance flexible supercapacitor. Adv. Compos. Hybrid. Mater. 8, 1–9 (2023). https://doi.org/10.1007/s42114-023-00675-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin S. Walke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nishad, H.S., Jaiswar, R.R., Tejam, S.D., Walke, P.S. (2024). MXenes for Pseudocapacitors. In: Gupta, R.K. (eds) Pseudocapacitors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45430-1_10

Download citation

Publish with us

Policies and ethics