Skip to main content

A 2D Cortical Flat Map Space for Computationally Efficient Mammalian Brain Simulation

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14124))

  • 226 Accesses

Abstract

We present a method for computationally efficient cortical brain simulation by constructing a 2D cortical flat map space on a regular grid. Neuroscience data can be mapped into this space to provide experimental information and constraints for the simulation. Neuron locations can be determined probabilistically by treating neuron densities as empirical probability distributions that can be sampled from. Therefore, this approach can be used for specifying parameters for small-scale to large-scale brain simulations (that could simulate the true number of neurons in the brain). The spatial warping of the cortical surface, when going between the flattened 2D space back into 3D, is accounted for by an estimated scale factor. This can be used to scale properties such as diffusion rates of neural activity across the flat map. We demonstrate the approach using neuroimaging data of the common marmoset, a New World primate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some versions of the model add a diffusion term to w to give:

    $$\frac{\partial w}{\partial t} = D_w \nabla ^2 w + (v - \gamma w - \beta )$$

    .

References

  1. Numba: A High Performance Python Compiler. https://numba.pydata.org/. Accessed 30 Apr 2023

  2. The Brain/MINDS Data Portal. https://dataportal.brainminds.jp. Accessed 30 Apr 2023

  3. Atapour, N., Majka, P., Wolkowicz, I.H., Malamanova, D., Worthy, K.H., Rosa, M.G.P.: Neuronal distribution across the cerebral cortex of the marmoset monkey (callithrix jacchus). Cereb. Cortex 29(9), 3836–3863 (2019). https://doi.org/10.1093/cercor/bhy263

    Article  Google Scholar 

  4. Dahlem, M.A., Isele, T.M.: Transient localized wave patterns and their application to migraine. J. Math. Neurosci. 3(1), 7 (2013). https://doi.org/10.1186/2190-8567-3-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Hata, J., et al.: Multi-modal brain magnetic resonance imaging database covering marmosets with a wide age range. Sci. Data 10(1), 221 (2023). https://doi.org/10.1038/s41597-023-02121-2

    Article  Google Scholar 

  6. Sanz Leon, P., et al.: The virtual brain: a simulator of primate brain network dynamics. Front. Neurosci. 7, 10 (2013). https://doi.org/10.3389/fninf.2013.00010

    Article  Google Scholar 

  7. Sanz-Leon, P., Knock, S.A., Spiegler, A., Jirsa, V.K.: Mathematical framework for large-scale brain network modeling in the virtual brain. NeuroImage 111, 385–430 (2015). https://doi.org/10.1016/j.neuroimage.2015.01.002. https://www.sciencedirect.com/science/article/pii/S1053811915000051

  8. Stefanescu, R.A., Jirsa, V.K.: A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons. PLoS Comput. Biol. 4(11), 1–17 (2008). https://doi.org/10.1371/journal.pcbi.1000219

    Article  MathSciNet  Google Scholar 

  9. Van Essen, D.C.: Cortical cartography and caret software. NeuroImage 62(2), 757–764 (2012). https://doi.org/10.1016/j.neuroimage.2011.10.077. https://www.sciencedirect.com/science/article/pii/S1053811911012419. 20 YEARS OF fMRI

  10. Woodward, A.: The NanoZoomer artificial intelligence connectomics pipeline for tracer injection studies of the marmoset brain. Brain Struct. Funct. 225(4), 1225–1243 (2020). https://doi.org/10.1007/s00429-020-02073-y

    Article  Google Scholar 

  11. Woodward, A., et al.: The Brain/MINDS 3D digital marmoset brain atlas. Sci. Data 5, 180009 (2018). https://doi.org/10.1038/sdata.2018.9

    Article  Google Scholar 

  12. Xu, B., Binczak, S., Jacquir, S., Pont, O., Yahia, H.: Isolation and characterization of plasmid deoxyribonucleic acid from streptomyces fradiae. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4334–4337 (2014). https://doi.org/10.1109/EMBC.2014.6944583

Download references

Acknowledgements

The authors wish to thank Drs. Jun Igarashi and Hiromich Tsukada for their valuable discussions on the topic of brain simulation. This research was supported by the program for Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from the Japan Agency for Medical Research and Development, AMED. Grant number: JP15dm0207001 to A.W. and R.G., JP19dm0207088 to K.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Woodward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Woodward, A., Gong, R., Nakae, K., Delmas, P. (2023). A 2D Cortical Flat Map Space for Computationally Efficient Mammalian Brain Simulation. In: Blanc-Talon, J., Delmas, P., Philips, W., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2023. Lecture Notes in Computer Science, vol 14124. Springer, Cham. https://doi.org/10.1007/978-3-031-45382-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45382-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45381-6

  • Online ISBN: 978-3-031-45382-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics