Skip to main content

Shear Force Activation of Epithelial Na+ Channel (ENaC) Is Modulated by N-Glycans of the β ENaC Subunit

  • Conference paper
  • First Online:
Mechanobiology (ISMB 2022)

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 25))

Included in the following conference series:

  • 51 Accesses

Abstract.

Canonical epithelial Na+ channels (ENaC) formed by three subunits (α, β and γENaC) are activated by shear force. Recent evidence highlights the role of N-glycans attached to asparagines (N) of α ENaC and the extracellular matrix for shear force activation of ENaC, in agreement with the force from filament concept. Although β and γ ENaC also contain multiple putative glycosylation sites in their extracellular domains, their role for shear force activation of ENaC is unknown and was addressed in this study.

ENaC subunits were expressed in Xenopus oocytes and ENaC currents were measured by two-electrode-voltage-clamp. Shear force was applied by a fluid flow generated via a pressurised bath perfusion system. N-glycosylation sites of β (11 extracellular putative N-glycosylation motifs) and γ ENaC (five glycosylation motifs) were disrupted by site-directed mutagenesis to remove the putative N-glycans.

The replacement of individual extracellular glycosylated N of γ ENaC did not affect ENaC’s ability to respond to shear force. In β ENaC two asparagines were identified that affected the shear force-activated current. Replacement of N99 and N378 did result in channels that providing a stronger shear force response in comparison with the wild type channel. While the replacement of N99 did also impair amiloride sensitive current suggesting reduced cell membrane expression. Channels lacking N378 did have increase shear force current, but basic biophysical properties assessed by single channel recordings were unchanged.

The increased shear force response observed with N378 identifies a new role for N-glycans for ENaC’s ability to respond to shear force. It might be speculated that N-glycans attached to the asparagine at position 378 of β ENaC facilitate inter-subunit interactions that stabilise the channel. Impairment of this interaction might make the channel more responsive to shear force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Althaus M, Bogdan R, Clauss WG, Fronius M (2007) Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB J 21:2389–2399

    Article  CAS  PubMed  Google Scholar 

  2. Awayda MS, Ismailov II, Berdiev BK, Benos DJ (1995) A cloned renal epithelial Na+ channel protein displays stretch activation in planar lipid bilayers. Am J Phys 268:C1450–C1459

    CAS  Google Scholar 

  3. Baldin JP, Barth D, Fronius M (2020) Epithelial Na+ channel (ENaC) formed by one or two subunits forms functional channels that respond to shear force. Front Physiol 11:141

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barth D, Knoepp F, Fronius M (2021) Enhanced shear force responsiveness of epithelial Na+ Channel’s (ENaC) d subunit following the insertion of N-glycosylation motifs relies on the extracellular matrix. Int J Mol Sci 22:2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Battistel MD, Pendrill R, Widmalm G, Freedberg DI (2013) Direct evidence for hydrogen bonding in glycans: a combined NMR and molecular dynamics study. J Phys Chem B 117:4860–4869

    Article  CAS  PubMed  Google Scholar 

  6. Bucior I, Scheuring S, Engel A, Burger MM (2004) Carbohydrate-carbohydrate interaction provides adhesion force and specificity for cellular recognition. J Cell Biol 165:529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carattino MD, Sheng S, Kleyman TR (2004) Epithelial Na+ channels are activated by laminar shear stress. J Biol Chem 279:4120–4126

    Article  CAS  PubMed  Google Scholar 

  8. Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:44–52

    Article  CAS  PubMed  Google Scholar 

  9. Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH (2014) Cell surface protein glycosylation in cancer. Proteomics 14:525–546

    Article  CAS  PubMed  Google Scholar 

  10. Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3:962–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cox CD, Bavi N, Martinac B (2019) Biophysical principles of ion-channel-mediated mechanosensory transduction. Cell Rep 29:1–12

    Article  CAS  PubMed  Google Scholar 

  12. Day CJ, Tran EN, Semchenko EA, Tram G, Hartley-Tassell LE, Ng PS, King RM, Ulanovsky R, McAtamney S, Apicella MA, Tiralongo J, Morona R, Korolik V, Jennings MP (2015) Glycan:glycan interactions: high affinity biomolecular interactions that can mediate binding of pathogenic bacteria to host cells. Proc Natl Acad Sci U S A 112:E7266–E7275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drummond HA (2012) betaENaC is a molecular component of a VSMC mechanotransducer that contributes to renal blood flow regulation, protection from renal injury, and hypertension. Front Physiol 3:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drummond HA, Grifoni SC, Jernigan NL (2008) A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology (Bethesda) 23:23–31

    CAS  PubMed  Google Scholar 

  15. Du H, Gu G, William CM, Chalfie M (1996) Extracellular proteins needed for C. elegans mechanosensation. Neuron 16:183–194

    Article  CAS  PubMed  Google Scholar 

  16. Emtage L, Gu G, Hartwieg E, Chalfie M (2004) Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons. Neuron 44:795–807

    Article  CAS  PubMed  Google Scholar 

  17. Fronius M (2022) Epithelial Na+ channel and the glycocalyx: a sweet and salty relationship for arterial shear stress sensing. Curr Opin Nephrol Hypertens 31:142–150

    Article  CAS  PubMed  Google Scholar 

  18. Fronius M, Clauss WG (2008) Mechano-sensitivity of ENaC: may the (shear) force be with you. Pflugers Arch 455:775–785

    Article  CAS  PubMed  Google Scholar 

  19. Furness DN, Hackney CM (1985) Cross-links between stereocilia in the Guinea pig cochlea. Hear Res 18:177–188

    Article  CAS  PubMed  Google Scholar 

  20. Gu J, Isaji T, Xu Q, Kariya Y, Gu W, Fukuda T, Du Y (2012) Potential roles of N-glycosylation in cell adhesion. Glycoconj J 29:599–607

    Article  CAS  PubMed  Google Scholar 

  21. Hanukoglu I, Hanukoglu A (2016) Epithelial sodium channel (ENaC) family: phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579:95–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  PubMed  Google Scholar 

  23. Janik ME, Lityńska A, Vereecken P (2010) Cell migration-the role of integrin glycosylation. Biochim Biophys Acta 1800:545–555

    Article  CAS  PubMed  Google Scholar 

  24. Kaltner H, Abad-Rodríguez J, Corfield AP, Kopitz J, Gabius HJ (2019) The sugar code: letters and vocabulary, writers, editors and readers and biosignificance of functional glycan-lectin pairing. Biochem J 476:2623–2655

    Article  CAS  PubMed  Google Scholar 

  25. Kashlan OB, Kinlough CL, Myerburg MM, Shi S, Chen J, Blobner BM, Buck TM, Brodsky JL, Hughey RP, Kleyman TR (2018) N-linked glycans are required on epithelial Na+channel subunits for maturation and surface expression. Am J Physiol Renal Physiol 314:F483–F492

    Article  PubMed  Google Scholar 

  26. Katta S, Krieg M, Goodman MB (2015) Feeling force: physical and physiological principles enabling sensory mechanotransduction. Annu Rev Cell Dev Biol 31:347–371

    Article  CAS  PubMed  Google Scholar 

  27. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767

    Article  CAS  PubMed  Google Scholar 

  28. Kizer N, Guo XL, Hruska K (1997) Reconstitution of stretch-activated cation channels by expression of the alpha-subunit of the epithelial sodium channel cloned from osteoblasts. Proc Natl Acad Sci U S A 94:1013–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Knoepp F, Ashley Z, Barth D, Baldin JP, Jennings M, Kazantseva M, Saw EL, Katare R, Alvarez de la Rosa D, Weissmann N, Fronius M (2020) Shear force sensing of epithelial Na+ channel (ENaC) relies on N-glycosylated asparagines in the palm and knuckle domains of αENaC. Proc Natl Acad Sci U S A 117:717–726

    Article  CAS  PubMed  Google Scholar 

  30. Noreng S, Bharadwaj A, Posert R, Yoshioka C, Baconguis I (2018) Structure of the human epithelial sodium channel by cryo-electron microscopy. elife 7:e39340

    Article  PubMed  PubMed Central  Google Scholar 

  31. Paudel P, McDonald FJ, Fronius M (2021) The δ subunit of epithelial sodium channel in humans-a potential player in vascular physiology. Am J Physiol Heart Circ Physiol 320:H487–H493

    Article  CAS  PubMed  Google Scholar 

  32. Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the Guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15:103–112

    Article  CAS  PubMed  Google Scholar 

  33. Reily C, Stewart TJ, Renfrow MB, Novak J (2019) Glycosylation in health and disease. Nat Rev Nephrol 15:346–366

    Article  PubMed  PubMed Central  Google Scholar 

  34. Virion Z, Doly S, Saha K, Lambert M, Guillonneau F, Bied C, Duke RM, Rudd PM, Robbe-Masselot C, Nassif X, Coureuil M, Marullo S (2019) Sialic acid mediated mechanical activation of β2 adrenergic receptors by bacterial pili. Nat Commun 10:4752

    Article  PubMed  PubMed Central  Google Scholar 

  35. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281–292.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang S, Meng F, Mohan S, Champaneri B, Gu Y (2009) Functional ENaC channels expressed in endothelial cells: a new candidate for mediating shear force. Microcirculation 16:276–287

    Article  PubMed  Google Scholar 

  37. Warnock DG, Kusche-Vihrog K, Tarjus A, Sheng S, Oberleithner H, Kleyman TR, Jaisser F (2014) Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. Nat Rev Nephrol 10:146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements.

The study was supported by government funding administered by the Royal Society of New Zealand (Marsden Fund; UOO1505) and a University of Otago Research Grant. In addition, the contribution of J-P. B. and D. B. was supported by a University of Otago PhD Scholarship and through AIM Funds from the Department of Physiology, University of Otago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fronius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baldin, JP., Barth, D., Knoepp, F., Fronius, M. (2024). Shear Force Activation of Epithelial Na+ Channel (ENaC) Is Modulated by N-Glycans of the β ENaC Subunit. In: Martinac, B., Cox, C.D., Poole, K., Baratchi, S., Kempe, D. (eds) Mechanobiology. ISMB 2022. Springer Series in Biophysics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-45379-3_2

Download citation

Publish with us

Policies and ethics